Uniform stability of a semilinear coupled Timoshenko beam and an elastodynamic system in an inhomogeneous medium

被引:0
|
作者
Mansouri, Sabeur [1 ]
机构
[1] Univ Monastir, LR 22ES03, LR Anal & Control PDEs, Dept Math,Fac Sci Monastir, Monastir, Tunisia
关键词
Uniform stabilization; semilinear wave equation; localized damping; Timoshenko system; WAVE-EQUATION; ENERGY DECAY; EXPONENTIAL STABILITY; EXACT CONTROLLABILITY; GLOBAL EXISTENCE; LAMINATED BEAMS; STABILIZATION; RATES;
D O I
10.1080/00036811.2024.2319227
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we consider a semilinear coupled Timoshenko beam and an elastodynamic system posed in an inhomogeneous one-dimensional medium subject to localized damping mechanisms acting in the three equations. We show uniform decay rates for the energy of the solutions of such a problem without assuming any restrictions on the non-constant coefficients. To establish these results, refined arguments of the Microlocal Analysis Theory are applied.
引用
收藏
页码:2808 / 2828
页数:21
相关论文
共 24 条
  • [1] Uniform Stability for a Semilinear Laminated Timoshenko Beams Posed in Inhomogeneous Medium with Localized Nonlinear Damping
    Mansouri, Sabeur
    JOURNAL OF DYNAMICS AND DIFFERENTIAL EQUATIONS, 2024,
  • [2] Uniform stability for a semilinear non-homogeneous Timoshenko system with localized nonlinear damping
    Cavalcanti, M. M.
    Correa, W. J.
    Cavalcanti, V. N. Domingos
    Silva, M. A. Jorge
    Zanchetta, J. P.
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2021, 72 (06):
  • [3] QU ASI-STABILITY PROPERTY AND ATTRACTORS FOR A SEMILINEAR TIMOSHENKO SYSTEM
    Fatori, Luci H.
    Jorge Silva, Marcio A.
    Narciso, Vando
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2016, 36 (11) : 6117 - 6132
  • [4] Uniform stability for a semilinear non-homogeneous Timoshenko system with localized nonlinear damping
    M. M. Cavalcanti
    W. J. Corrêa
    V. N. Domingos Cavalcanti
    M. A. Jorge Silva
    J. P. Zanchetta
    Zeitschrift für angewandte Mathematik und Physik, 2021, 72
  • [5] ON A SEMILINEAR TIMOSHENKO-COLEMAN-GURTIN SYSTEM: QUASI-STABILITY AND ATTRACTORS
    Feng, Baowei
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2017, 37 (09) : 4729 - 4751
  • [6] Uniform decay rate estimates for the semilinear wave equation in inhomogeneous medium with locally distributed nonlinear damping
    Cavalcanti, Marcelo M.
    Domingos Cavalcanti, Valeria N.
    Fukuoka, Ryuichi
    Pampu, Ademir B.
    Astudillo, Maria
    NONLINEARITY, 2018, 31 (09) : 4031 - 4064
  • [7] Asymptotic stability for a strongly coupled Klein-Gordon system in an inhomogeneous medium with locally distributed damping
    Cavalcanti, M. M.
    Domingos Cavalcanti, V. N.
    Mansouri, S.
    Gonzalez Martinez, V. H.
    Hajjej, Z.
    Astudillo Rojas, M. R.
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2020, 268 (02) : 447 - 489
  • [8] Local uniform stability for the semilinear wave equation in inhomogeneous media with locally distributed Kelvin-Voigt damping
    Astudillo, M.
    Cavalcanti, M. M.
    Fukuoka, R.
    Gonzalez Martinez, V. H.
    MATHEMATISCHE NACHRICHTEN, 2018, 291 (14-15) : 2145 - 2159
  • [9] Uniform stability for the Timoshenko beam with tip load
    Grobbelaar-Van Dalsen, Marie
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2010, 361 (02) : 392 - 400
  • [10] A stability result of a Timoshenko beam system with a delay term in the internal fractional feedback
    Aounallah, Radhouane
    JOURNAL OF PSEUDO-DIFFERENTIAL OPERATORS AND APPLICATIONS, 2024, 15 (02)