π-extended porphyrin-based near-infrared photosensitizers for mitochondria-targeted photodynamic therapy

被引:1
|
作者
Zhao, Hanjun [1 ]
Naganawa, Rina [2 ]
Yamada, Yuma [2 ,3 ]
Osakada, Yasuko [4 ,5 ,6 ]
Fujitsuka, Mamoru [4 ,6 ]
Mitomo, Hideyuki [7 ]
Miyatake, Yukiko [8 ]
Harashima, Hideyoshi [2 ]
Biju, Vasudevanpillai [1 ,7 ]
Takano, Yuta [1 ,7 ]
机构
[1] Hokkaido Univ, Grad Sch Environm Sci, N10, W5, Sapporo 0600810, Japan
[2] Hokkaido Univ, Fac Pharmaceut Sci, Sapporo, Hokkaido 0600812, Japan
[3] JST FOREST, Honcho 4-1-8, Kawaguchi, Saitama 3320012, Japan
[4] Osaka Univ, Inst Sci & Ind Res, Mihogaoka 8-1, Osaka, Ibaraki 5670047, Japan
[5] Osaka Univ, Inst Adv Cocreat Studies, Yamadagaoka 1-1, Suita, Osaka 5650871, Japan
[6] Osaka Univ, Inst Open & Transdisciplinary Res Initiat OTRI, Innovat Catalysis Sci Div, 2-1 Yamadaoka, Suita, Osaka 5650871, Japan
[7] Hokkaido Univ, Res Inst Elect Sci, N20 W10, Sapporo, Hokkaido 0010020, Japan
[8] Hokkaido Univ, Fac Med, Grad Sch Med, Dept Pathol, N15, W7, Sapporo 0608638, Japan
关键词
Reactive oxygen species; Singlet oxygen; Cancer therapy; Phototherapy; Pi-conjugation; SINGLET OXYGEN; DELIVERY;
D O I
10.1016/j.jphotochem.2023.115397
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Near-infrared (NIR) photosensitizers have great potential to develop various fields of photochemistry, such as photodynamic therapy (PDT) and photocatalysts. Organelle-targeted PDT using NIR light attracts considerable attention to high-efficiency phototherapy. Although drug delivery system (DDS) carriers are often combined with NIR photosensitizers for effective PDT, the systematic correlations between the cargo and DDS carriers are still unclear. In this study, we develop NIR-photosensitizers from a pi-extended porphyrin-type sensitizer (rTPA) that allows us to modify the structure and properties with a one-touch operation for the systematic study. Single-step amidations give five rTPA derivatives readily, facilitating comprehensive information about the properties according to their molecular structure and electric charge of the photosensitizer and DDS carriers prepared using a microfluidic device. One of the combinations, rTPA-NH2@MP, demonstrates the highest ability among the derivatives to kill pancreatic cancer cells, which are known to be highly lethal. The present study provides a guideline for inventing effective DDS-based NIR-PDT compounds for future photodrugs.
引用
收藏
页数:7
相关论文
共 50 条
  • [31] Benzothiazolium-based NIR AIE photosensitizers with type I and II ROS generation for efficient mitochondria-targeted photodynamic therapy
    Ma, Zhedong
    Wang, Qi
    Cai, Ziying
    Chen, Zuxiao
    Li, Nan
    Zhao, Na
    LUMINESCENCE, 2024, 39 (04)
  • [32] Porphyrin-based nanocomposites for tumor photodynamic therapy
    Yang, Weitao
    Zhang, Bingbo
    MRS BULLETIN, 2019, 44 (03) : 189 - 194
  • [33] A porphyrin-based metallacage for enhanced photodynamic therapy
    Jiao, Jingjing
    He, Jing
    Li, Mengmeng
    Yang, Jingxia
    Yang, Hong
    Wang, Xiaoqing
    Yang, Shiping
    NANOSCALE, 2022, 14 (17) : 6373 - 6383
  • [34] Porphyrin-based nanocomposites for tumor photodynamic therapy
    Weitao Yang
    Bingbo Zhang
    MRS Bulletin, 2019, 44 : 189 - 194
  • [35] Structural engineering of mitochondria-targeted Au-Ag2S photosensitizers for enhanced photodynamic and photothermal therapy
    Ma, Ruofei
    Zhang, Qi
    Wang, Yue
    Xu, Zhangrun
    JOURNAL OF MATERIALS CHEMISTRY B, 2024, 12 (31) : 7646 - 7658
  • [36] Development of Bacteriochlorophyll a-Based Near-Infrared Photosensitizers Conjugated to Gold Nanoparticles for Photodynamic Therapy of Cancer
    Pantiushenko, I. V.
    Rudakovskaya, P. G.
    Starovoytova, A. V.
    Mikhaylovskaya, A. A.
    Abakumov, M. A.
    Kaplan, M. A.
    Tsygankov, A. A.
    Majouga, A. G.
    Grin, M. A.
    Mironov, A. F.
    BIOCHEMISTRY-MOSCOW, 2015, 80 (06) : 752 - 762
  • [37] Development of bacteriochlorophyll a-based near-infrared photosensitizers conjugated to gold nanoparticles for photodynamic therapy of cancer
    I. V. Pantiushenko
    P. G. Rudakovskaya
    A. V. Starovoytova
    A. A. Mikhaylovskaya
    M. A. Abakumov
    M. A. Kaplan
    A. A. Tsygankov
    A. G. Majouga
    M. A. Grin
    A. F. Mironov
    Biochemistry (Moscow), 2015, 80 : 752 - 762
  • [38] Mitochondria-targeted cationic porphyrin-triphenylamine hybrids for enhanced two-photon photodynamic therapy
    Hammerer, Fabien
    Poyer, Florent
    Fourmois, Laura
    Chen, Su
    Garcia, Guillaume
    Teulade-Fichou, Marie-Paule
    Maillard, Philippe
    Mahuteau-Betzer, Florence
    BIOORGANIC & MEDICINAL CHEMISTRY, 2018, 26 (01) : 107 - 118
  • [39] Antibacterial Photodynamic Therapy in the Near-Infrared Region with a Targeting Antimicrobial Peptide Connected to a p-Extended Porphyrin
    Gourlot, Charly
    Gosset, Alexis
    Glattard, Elise
    Aisenbrey, Christopher
    Rangasamy, Sabarinathan
    Rabineau, Morgane
    Ouk, Tan-Sothea
    Sol, Vincent
    Lavalle, Philippe
    Gourlaouen, Christophe
    Ventura, Barbara
    Bechinger, Burkhard
    Heitz, Valerie
    ACS INFECTIOUS DISEASES, 2022, 8 (08): : 1509 - 1520
  • [40] Alkaline Phosphatase Activated Near-Infrared Frequency Upconversion Photosensitizers for Tumor Photodynamic Therapy
    Zhao, Chao
    Sun, Wanlu
    Huang, Xiaoyan
    Liu, Yi
    Wang, Hai-Yan
    JOURNAL OF MEDICINAL CHEMISTRY, 2024, 67 (15) : 13383 - 13391