Robust optimization with belief functions

被引:1
|
作者
Goerigk, Marc [1 ]
Guillaume, Romain [2 ]
Kasperski, Adam [3 ]
Zielinski, Pawel [3 ]
机构
[1] Univ Passau, Business Decis & Data Sci, Passau, Germany
[2] Univ Toulouse IRIT Toulouse, Toulouse, France
[3] Wroclaw Univ Sci & Technol, Wroclaw, Poland
关键词
Robust optimization; Hurwicz criterion; Belief function; Possibility theory; UNCERTAINTY;
D O I
10.1016/j.ijar.2023.108941
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In this paper, an optimization problem with uncertain objective function coefficients is considered. The uncertainty is specified by providing a discrete scenario set containing possible realizations of the objective function coefficients. The concept of belief function in the traditional and possibilistic setting is applied to define a set of admissible probability distributions over the scenario set. The generalized Hurwicz criterion is then used to compute a solution. In this paper, the complexity of the resulting problem is explored. Some exact and approximation methods of solving it are proposed. & COPY; 2023 The Author(s). Published by Elsevier Inc. This is an open access article under the CC BY license (http://creativecommons .org /licenses /by /4 .0/).
引用
收藏
页数:13
相关论文
共 50 条
  • [1] Robust Optimization with Scenarios Using Belief Functions
    Guillaume, Romain
    Kasperski, Adam
    Zielinski, Pawel
    OPERATIONS RESEARCH PROCEEDINGS 2021, 2022, : 114 - 119
  • [2] Robust optimization with scenarios using random fuzzy sets
    Guillaume, Romain
    Kasperski, Adam
    Zielinski, Pawel
    IEEE CIS INTERNATIONAL CONFERENCE ON FUZZY SYSTEMS 2021 (FUZZ-IEEE), 2021,
  • [3] Hidden Conflicts of Belief Functions
    Daniel, Milan
    Kratochvil, Vaclav
    INTERNATIONAL JOURNAL OF COMPUTATIONAL INTELLIGENCE SYSTEMS, 2021, 14 (01) : 438 - 452
  • [4] RATIONALITY PRINCIPLES FOR PREFERENCES ON BELIEF FUNCTIONS
    Coletti, Giulianella
    Petturiti, Davide
    Vantaggi, Barbara
    KYBERNETIKA, 2015, 51 (03) : 486 - 507
  • [5] Fast combination of a class of belief functions
    Zhang, XH
    Yin, HK
    FUSION'98: PROCEEDINGS OF THE INTERNATIONAL CONFERENCE ON MULTISOURCE-MULTISENSOR INFORMATION FUSION, VOLS 1 AND 2, 1998, : 131 - 135
  • [6] Distributionally robust possibilistic optimization problems
    Guillaume, Romain
    Kasperski, Adam
    Zielinski, Pawel
    FUZZY SETS AND SYSTEMS, 2023, 454 : 56 - 73
  • [7] Distributionally Robust Optimization in Possibilistic Setting
    Guillaume, Romain
    Kasperski, Adam
    Zielinski, Pawel
    IEEE CIS INTERNATIONAL CONFERENCE ON FUZZY SYSTEMS 2021 (FUZZ-IEEE), 2021,
  • [8] PREFERENCE ROBUST OPTIMIZATION FOR CHOICE FUNCTIONS ON THE SPACE OF CDFs
    Haskell, William B.
    Xu, Huifu
    Huang, Wenjie
    SIAM JOURNAL ON OPTIMIZATION, 2022, 32 (02) : 1446 - 1470
  • [9] Acting on belief functions
    Smith, Nicholas J. J.
    THEORY AND DECISION, 2023, 95 (04) : 575 - 621
  • [10] On Jaffray's Decision Model for Belief Functions
    Giang, Phan H.
    COMBINING SOFT COMPUTING AND STATISTICAL METHODS IN DATA ANALYSIS, 2010, 77 : 313 - 320