Enhancing level set-based topology optimization with anisotropic graded meshes

被引:6
作者
Cortellessa, Davide [1 ,2 ]
Ferro, Nicola [3 ]
Perotto, Simona [3 ]
Micheletti, Stefano [3 ]
机构
[1] Politecn Milan, Dipartimento Matemat, Piazza L da Vinci 32, I-20133 Milan, Italy
[2] Univ Politecn Cataluna, LaCaN, ETS Ingn Caminos Canales & Puertos, Barcelona, Spain
[3] Politecn Milan, Dipartimento Matemat, MOX, Piazza L da Vinci 32, I-20133 Milan, Italy
关键词
Topology optimization; Minimum compliance; Level set; Anisotropic mesh; Recovery-based error estimator; Finite element method; SUPERCONVERGENT PATCH RECOVERY; ADAPTATION; DESIGN; ALGORITHM;
D O I
10.1016/j.amc.2023.127903
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We propose a new algorithm for the design of topologically optimized lightweight struc-tures, under a minimum compliance requirement. The new process enhances a standard level set formulation in terms of computational efficiency, thanks to the employment of a computational mesh customized to the problem at hand. We pursue a twofold goal, i.e., to deliver a final layout characterized by a smooth contour and reliable mechanical properties. The smoothness of the optimized structure is ensured by the employment of an anisotropic adapted mesh, which sharply captures the material/void interface. A robust mechanical performance is guaranteed by a uniform tessellation of the internal part of the optimized configuration. A thorough numerical investigation corroborates the effectiveness of the proposed algorithm as a reliable and computationally affordable design tool, both in two-and three-dimensional contexts.(c) 2023 Elsevier Inc. All rights reserved.
引用
收藏
页数:20
相关论文
共 69 条
[1]   An immersed boundary method using unstructured anisotropic mesh adaptation combined with level-sets and penalization techniques [J].
Abgrall, R. ;
Beaugendre, H. ;
Dobrzynski, C. .
JOURNAL OF COMPUTATIONAL PHYSICS, 2014, 257 :83-101
[2]   A posteriori error estimation in finite element analysis [J].
Ainsworth, M ;
Oden, JT .
COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 1997, 142 (1-2) :1-88
[3]   Multi-objective optimization of nitinol stent design [J].
Alaimo, G. ;
Auricchio, F. ;
Conti, M. ;
Zingales, M. .
MEDICAL ENGINEERING & PHYSICS, 2017, 47 :13-24
[4]  
Allaire G, 2004, STRUCT MULTIDISCIP O, V28, P87, DOI [10.1007/S00158-004-0442-8, 10.1007/s00158-004-0442-8]
[5]   Structural optimization using sensitivity analysis and a level-set method [J].
Allaire, G ;
Jouve, F ;
Toader, AM .
JOURNAL OF COMPUTATIONAL PHYSICS, 2004, 194 (01) :363-393
[6]   A level-set-based topology optimization strategy using radial basis functions and a Hilbertian velocity extension [J].
Andrade, Giovanna C. ;
Santos, Sandra A. .
APPLIED MATHEMATICAL MODELLING, 2022, 111 :108-125
[7]   Conservative and adaptive level-set method for the simulation of two-fluid flows [J].
Bahbah, C. ;
Khalloufi, M. ;
Larcher, A. ;
Mesri, Y. ;
Coupez, T. ;
Valette, R. ;
Hachem, E. .
COMPUTERS & FLUIDS, 2019, 191
[8]  
Bendsoe M., 2003, Topology Optimization, V2nd, DOI [10.1007/978-3-662-05086-6, DOI 10.1007/978-3-662-05086-6]
[9]  
Bendsoe M.P., 1995, OPTIMIZATION STRUCTU
[10]  
Bendsoe M.P. Sigmund., 2004, TOPOLOGY OPTIMIZATIO