Bogomolov-Sommese type vanishing theorem for holomorphic vector bundles equipped with positive singular Hermitian metrics

被引:1
作者
Watanabe, Yuta [1 ]
机构
[1] Univ Tokyo, Meguro Ku, Tokyo, Japan
关键词
L-2-estimates; Singular Hermitian metrics; Cohomology vanishing; Nakano positivity; MULTIPLIER IDEAL SHEAVES; KAHLER-EINSTEIN METRICS;
D O I
10.1007/s00209-023-03252-3
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this article, we obtain the Bogomolov-Sommese type vanishing theorem involving multiplier ideal sheaves for big line bundles. We define a dual Nakano semi-positivity of singular Hermitian metrics with L-2-estimates and prove a vanishing theorem which is a generalization of the Bogomolov-Sommese type vanishing theorem to holomorphic vector bundles.
引用
收藏
页数:23
相关论文
共 30 条
[1]  
Berndtsson B., 2010, An introduction to things , Analytic and algebraic geometry, V17, P7, DOI [10.1090/pcms/017, DOI 10.1090/PCMS/017]
[2]   Curvature of vector bundles associated to holomorphic fibrations [J].
Berndtsson, Bo .
ANNALS OF MATHEMATICS, 2009, 169 (02) :531-560
[3]   BERGMAN KERNELS AND THE PSEUDOEFFECTIVITY OF RELATIVE CANONICAL BUNDLES [J].
Berndtsson, Bo ;
Paun, Mihai .
DUKE MATHEMATICAL JOURNAL, 2008, 145 (02) :341-378
[4]  
Bogomolov F.A., 1978, P INT C MATH, P517
[5]  
de Cataldo MAA, 1998, J REINE ANGEW MATH, V502, P93
[6]  
Demailly J.-P., 1992, Lecture Notes in Math, V1507, p87 104
[7]  
Demailly J.P., 2010, Surveys of modern mathematics
[8]  
Demailly J-P., COMPLEX ANAL DIFFERE
[9]  
Demailly JP, 2021, Arxiv, DOI arXiv:2002.02677
[10]  
DEMAILLY JP, 1982, ANN SCI ECOLE NORM S, V15, P457