Remote-Entanglement Protocols for Stationary Qubits with Photonic Interfaces

被引:17
作者
Beukers, Hans K. C. [1 ]
Pasini, Matteo [1 ]
Choi, Hyeongrak [2 ]
Englund, Dirk [2 ]
Hanson, Ronald [1 ]
Borregaard, Johannes [1 ]
机构
[1] Delft Univ Technol, QuTech, POB 5046, NL-2600 GA Delft, Netherlands
[2] MIT, Res Lab Elect, Cambridge, MA 02139 USA
来源
PRX QUANTUM | 2024年 / 5卷 / 01期
基金
美国国家科学基金会; 荷兰研究理事会;
关键词
QUANTUM-NETWORK; HERALDED ENTANGLEMENT; SINGLE SPINS; TELEPORTATION; REALIZATION; NODES; ATOMS;
D O I
10.1103/PRXQuantum.5.010202
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The generation of entanglement between distant quantum systems is at the core of quantum networking. In recent years, numerous theoretical protocols for remote-entanglement generation have been proposed, many of which have been experimentally realized. Here, we provide a modular theoretical framework to elucidate the general mechanisms of photon-mediated entanglement generation between single spins in atomic or solid -state systems. Our framework categorizes existing protocols at various levels of abstraction and allows for combining the elements of different schemes in new ways. These abstraction layers make it possible to readily compare protocols for different quantum hardware. To enable the practical evaluation of protocols tailored to specific experimental parameters, we have devised numerical simulations based on the framework with our codes available online.
引用
收藏
页数:27
相关论文
共 97 条
[1]  
Aharonovich I, 2016, NAT PHOTONICS, V10, P631, DOI [10.1038/NPHOTON.2016.186, 10.1038/nphoton.2016.186]
[2]   Electrical and optical control of single spins integrated in scalable semiconductor devices [J].
Anderson, Christopher P. ;
Bourassa, Alexandre ;
Miao, Kevin C. ;
Wolfowicz, Gary ;
Mintun, Peter J. ;
Crook, Alexander L. ;
Abe, Hiroshi ;
Ul Hassan, Jawad ;
Son, Nguyen T. ;
Ohshima, Takeshi ;
Awschalom, David D. .
SCIENCE, 2019, 366 (6470) :1225-+
[3]   Efficient high-fidelity quantum computation using matter qubits and linear optics [J].
Barrett, SD ;
Kok, P .
PHYSICAL REVIEW A, 2005, 71 (06)
[4]  
Bartlett B, 2018, Arxiv, DOI arXiv:1808.07047
[5]   Purification of noisy entanglement and faithful teleportation via noisy channels [J].
Bennett, CH ;
Brassard, G ;
Popescu, S ;
Schumacher, B ;
Smolin, JA ;
Wootters, WK .
PHYSICAL REVIEW LETTERS, 1996, 76 (05) :722-725
[6]   Perspective: Stimulated Raman adiabatic passage: The status after 25 years [J].
Bergmann, Klaas ;
Vitanov, Nikolay V. ;
Shore, Bruce W. .
JOURNAL OF CHEMICAL PHYSICS, 2015, 142 (17)
[7]   Heralded entanglement between solid-state qubits separated by three metres [J].
Bernien, H. ;
Hensen, B. ;
Pfaff, W. ;
Koolstra, G. ;
Blok, M. S. ;
Robledo, L. ;
Taminiau, T. H. ;
Markham, M. ;
Twitchen, D. J. ;
Childress, L. ;
Hanson, R. .
NATURE, 2013, 497 (7447) :86-90
[8]   Two-Photon Quantum Interference from Separate Nitrogen Vacancy Centers in Diamond [J].
Bernien, Hannes ;
Childress, Lilian ;
Robledo, Lucio ;
Markham, Matthew ;
Twitchen, Daniel ;
Hanson, Ronald .
PHYSICAL REVIEW LETTERS, 2012, 108 (04)
[9]  
Beukers H. K. C., 2023, QuREBB, GitHub repository
[10]   Experimental demonstration of memory-enhanced quantum communication [J].
Bhaskar, M. K. ;
Riedinger, R. ;
Machielse, B. ;
Levonian, D. S. ;
Nguyen, C. T. ;
Knall, E. N. ;
Park, H. ;
Englund, D. ;
Loncar, M. ;
Sukachev, D. D. ;
Lukin, M. D. .
NATURE, 2020, 580 (7801) :60-+