Porcine spinal cord injury model for translational research across multiple functional systems

被引:11
作者
Ahmed, Rakib Uddin [1 ,2 ,5 ]
Knibbe, Chase A. [1 ,2 ]
Wilkins, Felicia [1 ,2 ]
Sherwood, Leslie C. [3 ]
Howland, Dena R. [1 ,2 ,4 ]
Boakye, Maxwell [1 ,2 ]
机构
[1] Univ Louisville, Dept Neurol Surg, Louisville, KY USA
[2] Univ Louisville, Kentucky Spinal Cord Injury Res Ctr, Louisville, KY USA
[3] Univ Louisville, Comparat Med Res Unit, Louisville, KY USA
[4] Robley Rex VA Med Ctr, Louisville, KY 40202 USA
[5] Univ Louisville, Kentucky Spinal Cord Injury Res Ctr, 511 S Floyd St,Med Dent Res Bldg, Louisville, KY 40202 USA
关键词
Spinal cord injury; Porcine model; Neuroanatomy; Microbiome; DEEP TISSUE-INJURY; PIG MODEL; CEREBROSPINAL-FLUID; ANIMAL-MODELS; AUTONOMIC DYSFUNCTION; PRIMATE MODELS; GENE-THERAPY; BLOOD-FLOW; FEMALE PIG; RECOVERY;
D O I
10.1016/j.expneurol.2022.114267
中图分类号
Q189 [神经科学];
学科分类号
071006 ;
摘要
Animal models are necessary to identify pathological changes and help assess therapeutic outcomes following spinal cord injury (SCI). Small animal models offer value in research in terms of their easily managed size, minimal maintenance requirements, lower cost, well-characterized genomes, and ability to power research studies. However, despite these benefits, small animal models have neurologic and anatomical differences that may influence translation of results to humans and thus limiting the success of their use in preclinical studies as a direct pipeline to clinical studies. Large animal models, offer an attractive intermediary translation model that may be more successful in translating to the clinic for SCI research. This is largely due to their greater neurologic and anatomical similarities to humans. The physical characteristics of pig spinal cord, gut microbiome, meta-bolism, proportions of white to grey matter, bowel anatomy and function, and urinary system are strikingly similar and provide great insight into human SCI conditions. In this review, we address the variety of existing porcine injury models and their translational relevance, benefits, and drawbacks in modeling human systems and functions for neurophysiology, cardiovascular, gastrointestinal and urodynamic functions.
引用
收藏
页数:10
相关论文
共 50 条
[31]   An ovine model of spinal cord injury [J].
Wilson, Saul ;
Abode-Iyamah, Kingsley O. ;
Miller, John W. ;
Reddy, Chandan G. ;
Safayi, Sina ;
Fredericks, Douglas C. ;
Jeffery, Nicholas D. ;
DeVries-Watson, Nicole A. ;
Shivapour, Sara K. ;
Viljoen, Stephanus ;
Dalm, Brian D. ;
Gibson-Corley, Katherine N. ;
Johnson, Michael D. ;
Gillies, George T. ;
Howard, Matthew A., III .
JOURNAL OF SPINAL CORD MEDICINE, 2017, 40 (03) :346-360
[32]   Future Directions for Spinal Cord Injury Research: Recent Developments and Model Systems Contributions [J].
Tate, Denise G. ;
Boninger, Michael L. ;
Jackson, Amie B. .
ARCHIVES OF PHYSICAL MEDICINE AND REHABILITATION, 2011, 92 (03) :509-515
[33]   Intraoperative ultrasound monitoring of spinal cord swelling and parenchymal changes in a porcine model of thoracic spinal cord injury [J].
Bessen, Madeleine Amy ;
Marian, Oana Claudia ;
Doig, Ryan L. O'Hare ;
Sorby-Adams, Annabel ;
Gayen, Christine Diana ;
Kaukas, Lola May ;
Leonard, Anna Victoria ;
Jones, Claire Frances .
EXPERIMENTAL NEUROLOGY, 2025, 392
[34]   Purinergic signaling systems across comparative models of spinal cord injury [J].
Stefanova, Eva E. ;
Scott, Angela L. .
NEURAL REGENERATION RESEARCH, 2022, 17 (11) :2391-2398
[35]   A 72-h sedated porcine model of traumatic spinal cord injury [J].
Thygesen, Mathias Moller ;
Entezari, Seyar ;
Houlind, Nanna ;
Nielsen, Teresa Haugaard ;
Olsen, Nicholas Ostergaard ;
Nielsen, Tim Damgaard ;
Skov, Mathias ;
Borgstedt-Bendixen, Joel ;
Tankisi, Alp ;
Rasmussen, Mads ;
Einarsson, Halldor Bjarki ;
Agger, Peter ;
Orlowski, Dariusz ;
Dyrskog, Stig Eric ;
Thorup, Line ;
Pedersen, Michael ;
Rasmussen, Mikkel Mylius .
BRAIN AND SPINE, 2024, 4
[36]   Developing a contemporary functional outcome measure for spinal cord injury research [J].
M D Slavin ;
P A Kisala ;
A M Jette ;
D S Tulsky .
Spinal Cord, 2010, 48 :262-267
[37]   Developing a contemporary functional outcome measure for spinal cord injury research [J].
Slavin, M. D. ;
Kisala, P. A. ;
Jette, A. M. ;
Tulsky, D. S. .
SPINAL CORD, 2010, 48 (03) :262-267
[38]   The Functional Role of Spinal Interneurons Following Traumatic Spinal Cord Injury [J].
Zavvarian, Mohammad-Masoud ;
Hong, James ;
Fehlings, Michael G. .
FRONTIERS IN CELLULAR NEUROSCIENCE, 2020, 14
[39]   Overexpression of Rictor in the injured spinal cord promotes functional recovery in a rat model of spinal cord injury [J].
Chen, Ningning ;
Zhou, Pengxiang ;
Liu, Xizhe ;
Li, Jiachun ;
Wan, Yong ;
Liu, Shaoyu ;
Wei, Fuxin .
FASEB JOURNAL, 2020, 34 (05) :6984-6998
[40]   Changes in Pressure, Hemodynamics, and Metabolism within the Spinal Cord during the First 7 Days after Injury Using a Porcine Model [J].
Streijger, Femke ;
So, Kitty ;
Manouchehri, Neda ;
Tigchelaar, Seth ;
Lee, Jae H. T. ;
Okon, Elena B. ;
Shortt, Katelyn ;
Kim, So-Eun ;
McInnes, Kurt ;
Cripton, Peter ;
Kwon, Brian K. .
JOURNAL OF NEUROTRAUMA, 2017, 34 (24) :3336-3350