Microstructural evolution in adiabatic shear localization in Al0.4CoCrFeNi high-entropy alloy

被引:4
作者
Liu, Xiaogang [1 ]
Jiang, Lihong [1 ]
Liu, Zheng [1 ]
Zhao, Mingjie [1 ,2 ]
Guo, Zhenghua [1 ]
Wang, Shanlin [1 ]
Xiong, Guanliang [1 ]
Zhu, Lin [1 ]
机构
[1] Nanchang Hangkong Univ, Sch Aeronaut Mfg Engn, Nanchang 330063, Peoples R China
[2] Nanchang Hangkong Univ, Jiangxi Key Lab Forming & Joining Technol Aerosp C, Nanchang 330063, Peoples R China
来源
JOURNAL OF MATERIALS RESEARCH AND TECHNOLOGY-JMR&T | 2024年 / 29卷
基金
中国国家自然科学基金;
关键词
Adiabatic shear band (ASB); Dynamic recrystallization; Al 0.4 CoCrFeNi high -entropy alloy; STRAIN-RATE; MECHANICAL-PROPERTIES; COMPRESSIVE DEFORMATION; DYNAMIC DEFORMATION; FATIGUE BEHAVIOR; ALUMINUM-ALLOY; BANDS; TITANIUM; AL; RECRYSTALLIZATION;
D O I
10.1016/j.jmrt.2024.02.075
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
The microstructural evolution in adiabatic shear localization in Al0.4CoCrFeNi high-entropy alloy (HEA) was examined through a forced shear technique by a split Hopkinson pressure bar (SHPB) using hat-shaped specimens. The TEM results show that the elongated and parallel grains are the major characteristics of the transition region. The central region of the adiabatic shear band (ASB) is primarily composed of ultrafine and equiaxed recrystallized grains with sizes ranging from 50 to 250 nm, with a typical size of 100 nm. It is found that the plastic deformation of the majority of large grains (100-250 nm) is primarily mediated by dislocation slip. To effectively coordinate this deformation, twins with varying thicknesses were generated within the grains (50-100 nm) through cross-slip of dislocations and dynamic overlapping of four stacking faults (SFs) of dissociated dislocations, respectively. According to the classical one-dimensional Fourier heat conduction equation and recrystallization theory calculations, it is proved that ultrafine and equiaxed recrystallized grains did not undergo significant growth during the cooling stage after deformation. The thermodynamics and kinetics calculated results indicate that instant grain refinement within the ASB is due to the rotational dynamic recrystallization (RDR) that occurs during the deformation process.
引用
收藏
页码:3409 / 3419
页数:11
相关论文
共 50 条
  • [41] Microstructural evolution in adiabatic shear localization in stainless steel
    Meyers, MA
    Xu, YB
    Xue, Q
    Pérez-Prado, MT
    McNelley, TR
    ACTA MATERIALIA, 2003, 51 (05) : 1307 - 1325
  • [42] Dynamic mechanical properties and microstructure evolution of high-entropy alloy Al0.3CoCrFeNi: Effects of strain rate, temperature and B2 precipitates
    Pan, R. C.
    Tang, W. Y.
    Han, P. F.
    Wang, Z. K.
    Li, L. X.
    Cai, Y.
    Zhao, X. J.
    Zhang, N. B.
    Lu, L.
    Luo, S. N.
    MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2025, 927
  • [43] Effect of annealing heat treatment on microstructural evolution and tensile behavior of Al0.5CoCrFeMnNi high-entropy alloy
    Park, Jeong Min
    Moon, Jongun
    Bae, Jae Wung
    Jung, Jaimyun
    Lee, Sunghak
    Kim, Hyoung Seop
    MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2018, 728 : 251 - 258
  • [44] Adiabatic Shear Susceptibility of Fe50Mn30Co10Cr10 High-Entropy Alloy
    Yang, Shuangjun
    Yang, Yang
    Yang, Zhiyu
    Lu, Chi
    Liu, Wenhui
    METALLURGICAL AND MATERIALS TRANSACTIONS A-PHYSICAL METALLURGY AND MATERIALS SCIENCE, 2020, 51 (04): : 1771 - 1780
  • [45] Strengthening CoCrFeNi high-entropy alloy by Laves and boride phases
    Chen, Xiu-gang
    Qin, Gang
    Gao, Xue-feng
    Chen, Rui-run
    Song, Qiang
    Cui, Hong-zhi
    CHINA FOUNDRY, 2022, 19 (06) : 457 - 463
  • [46] Strengthening CoCrFeNi high-entropy alloy by Laves and boride phases
    Xiu-gang Chen
    Gang Qin
    Xue-feng Gao
    Rui-run Chen
    Qiang Song
    Hong-zhi Cui
    China Foundry, 2022, 19 : 457 - 463
  • [47] Microstructure and properties of bulk Al0.5CoCrFeNi high-entropy alloy by cold rolling and subsequent annealing
    Guo, Tong
    Li, Jinshan
    Wang, Jun
    Wang, William Yi
    Liu, Yi
    Luo, Ximing
    Kou, Hongchao
    Beaugnon, Eric
    MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2018, 729 : 141 - 148
  • [48] Strong grain-size effect on deformation twinning of an Al0.1CoCrFeNi high-entropy alloy
    Wu, S. W.
    Wang, G.
    Yi, J.
    Jia, Y. D.
    Hussain, I.
    Zhai, Q. J.
    Liaw, P. K.
    MATERIALS RESEARCH LETTERS, 2017, 5 (04): : 276 - 283
  • [49] Effects of high pressure torsion on microstructures and properties of an Al0.1CoCrFeNi high-entropy alloy
    Yu, P. F.
    Cheng, H.
    Zhang, L. J.
    Zhang, H.
    Jing, Q.
    Ma, M. Z.
    Liaw, P. K.
    Li, G.
    Liu, R. P.
    MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2016, 655 : 283 - 291
  • [50] An efficient way to induce recrystallization of deformed Al0.1CoCrFeNi high-entropy alloy
    Wang, Yafei
    Wu, Weichao
    Pan, Aigang
    Cui, Fei
    Yang, Xiaojun
    MATERIALS LETTERS, 2023, 331