Multiple concentrating solutions for a fractional (p, q)-Choquard equation

被引:11
作者
Ambrosio, Vincenzo [1 ]
机构
[1] Univ Politecn Marche, Dipartimento Ingn Ind & Sci Matemat, Via Brecce Bianche 12, I-60131 Ancona, Italy
关键词
fractional; (p; q)-Laplacian operator; penalization technique; Ljusternik-Schnirelmann theory; CHOQUARD EQUATION; POSITIVE SOLUTIONS; ELLIPTIC PROBLEMS; GROUND-STATE; EXISTENCE; GUIDE;
D O I
10.1515/ans-2023-0125
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We focus on the following fractional (p,q)-Choquard problem: {(-Delta)(p)(s)u + (-Delta)(q)(s)u + V(epsilon x)(vertical bar u vertical bar(p-2)u + vertical bar u vertical bar(q-2)u) = (1/vertical bar x vertical bar(mu)*F(u)) f(u) in R-N, u is an element of W-s,W-p(R-N) boolean AND W-s,W-q(R-N), u > 0 in R-N, where epsilon > 0 is a small parameter, 0 < s < 1, 1 < p < q < N/s, 0 < mu < sp,(-Delta)(r)(s), with r is an element of {p, q}, is the fractional r-Laplacian operator, V: R-N -> R is a positive continuous potential satisfying a local condition, f: R -> R is a continuous nonlinearity with subcritical growth at infinity and F(t) = integral(t)(0) f(tau)d tau. Applying suitable variationaland topological methods, we relate the number of solutions with the topology of the set where the potential V attains its minimum value.
引用
收藏
页码:510 / 541
页数:32
相关论文
共 51 条
[41]   Fractional Choquard equation with critical nonlinearities [J].
Mukherjee, T. ;
Sreenadh, K. .
NODEA-NONLINEAR DIFFERENTIAL EQUATIONS AND APPLICATIONS, 2017, 24 (06)
[42]   Nonlinear nonhomogeneous singular problems [J].
Papageorgiou, Nikolaos S. ;
Radulescu, Vicentiu D. ;
Repovs, Dusan D. .
CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2020, 59 (01)
[43]  
Pekar S., 1954, Untersuchung uber die Elektronentheorie der Kristalle
[44]   Existence results for Schrodinger-Choquard-Kirchhoff equations involving the fractional p-Laplacian [J].
Pucci, Patrizia ;
Xiang, Mingqi ;
Zhang, Binlin .
ADVANCES IN CALCULUS OF VARIATIONS, 2019, 12 (03) :253-275
[45]   ON A CLASS OF NONLINEAR SCHRODINGER-EQUATIONS [J].
RABINOWITZ, PH .
ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 1992, 43 (02) :270-291
[46]   Ground states for nonlinear fractional Choquard equations with general nonlinearities [J].
Shen, Zifei ;
Gao, Fashun ;
Yang, Minbo .
MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2016, 39 (14) :4082-4098
[47]  
SHIKOV VV, 1995, RUSS J MATH PHYS, V3, P249
[48]  
Simon J., 1978, Lect. Notes Math., V665, P205, DOI [10.1007/BFb0061807, DOI 10.1007/BFB0061807]
[49]  
Szulkin A., 2010, Handbook of Nonconvex Analysis and Applications
[50]  
Willem M., 1996, MINIMAX THEOREMS, DOI 10.1007/978-1-4612-4146-1