Multiple concentrating solutions for a fractional (p, q)-Choquard equation

被引:11
作者
Ambrosio, Vincenzo [1 ]
机构
[1] Univ Politecn Marche, Dipartimento Ingn Ind & Sci Matemat, Via Brecce Bianche 12, I-60131 Ancona, Italy
关键词
fractional; (p; q)-Laplacian operator; penalization technique; Ljusternik-Schnirelmann theory; CHOQUARD EQUATION; POSITIVE SOLUTIONS; ELLIPTIC PROBLEMS; GROUND-STATE; EXISTENCE; GUIDE;
D O I
10.1515/ans-2023-0125
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We focus on the following fractional (p,q)-Choquard problem: {(-Delta)(p)(s)u + (-Delta)(q)(s)u + V(epsilon x)(vertical bar u vertical bar(p-2)u + vertical bar u vertical bar(q-2)u) = (1/vertical bar x vertical bar(mu)*F(u)) f(u) in R-N, u is an element of W-s,W-p(R-N) boolean AND W-s,W-q(R-N), u > 0 in R-N, where epsilon > 0 is a small parameter, 0 < s < 1, 1 < p < q < N/s, 0 < mu < sp,(-Delta)(r)(s), with r is an element of {p, q}, is the fractional r-Laplacian operator, V: R-N -> R is a positive continuous potential satisfying a local condition, f: R -> R is a continuous nonlinearity with subcritical growth at infinity and F(t) = integral(t)(0) f(tau)d tau. Applying suitable variationaland topological methods, we relate the number of solutions with the topology of the set where the potential V attains its minimum value.
引用
收藏
页码:510 / 541
页数:32
相关论文
共 51 条
[1]   On a periodic Schrodinger equation with nonlocal superlinear part [J].
Ackermann, N .
MATHEMATISCHE ZEITSCHRIFT, 2004, 248 (02) :423-443
[2]   Investigating the multiplicity and concentration behaviour of solutions for a quasi-linear Choquard equation via the penalization method [J].
Alves, Claudianor O. ;
Yang, Minbo .
PROCEEDINGS OF THE ROYAL SOCIETY OF EDINBURGH SECTION A-MATHEMATICS, 2016, 146 (01) :23-58
[3]   Existence of semiclassical ground state solutions for a generalized Choquard equation [J].
Alves, Claudianor O. ;
Yang, Minbo .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2014, 257 (11) :4133-4164
[4]   Multiplicity and concentration of solutions for a quasilinear Choquard equation [J].
Alves, Claudianor O. ;
Yang, Minbo .
JOURNAL OF MATHEMATICAL PHYSICS, 2014, 55 (06)
[5]  
Ambrosetti A., 1973, Journal of Functional Analysis, V14, P349, DOI 10.1016/0022-1236(73)90051-7
[6]  
Ambrosio T., 2021, J MATH ANAL APPL, V501, P31
[7]  
Ambrosio V., 2021, ELLIPTIC PARABOLIC P, pxvii+662
[8]   On the uniform vanishing property at infinity of Ws,p-sequences [J].
Ambrosio, Vincenzo .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2024, 238
[9]   The nonlinear (p, q)-Schrodinger equation with a general nonlinearity: Existence and concentration [J].
Ambrosio, Vincenzo .
JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 2023, 178 :141-184
[10]   Fractional (p, q)-Schrodinger Equations with Critical and Supercritical Growth [J].
Ambrosio, Vincenzo .
APPLIED MATHEMATICS AND OPTIMIZATION, 2022, 86 (03)