SimilarityTS: Toolkit for the evaluation of similarity for multivariate time series

被引:1
作者
Fernandez-Montes, Alejandro [1 ]
Fernandez-Cerero, Damian [1 ]
Escalera-Gonzalez, Felipe [1 ]
Jakobik, Agnieszka [3 ]
Bermejo, Belen [2 ]
Juiz, Carlos [2 ]
机构
[1] Univ Seville, Dept Comp Languages & Syst, Seville 41012, Spain
[2] Univ Balearic Isl, Dept Comp Sci, Palma De Mallorca 07122, Spain
[3] Cracow Univ Technol, Warszawska st 24, PL-31155 Krakow, Poland
关键词
Time series; Similarity; Multivariate; Toolkit; !text type='Python']Python[!/text; NETWORKS;
D O I
10.1016/j.softx.2023.101527
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
This paper presents SimilarityTS, a toolkit for the evaluation of similarity for multivariate time series. This software enables the comparison and assessment of the similarity between time series in a standard way, using the most relevant metrics and figures usually employed in the literature, such as the Kullback-Leibler divergence, Dynamic Time Warping, DTW paths, PCA, and t-SNE representations, among others. This toolkit provides a better way to compare research results and facilitates the repeatability of experiments.
引用
收藏
页数:7
相关论文
共 14 条
[1]  
[Anonymous], 2009, Encyclopedia of distances, DOI DOI 10.1007/978-3-642-30958-8
[2]   Process model forecasting and change exploration using time series analysis of event sequence data [J].
De Smedt, Johannes ;
Yeshchenko, Anton ;
Polyvyanyy, Artem ;
De Weerdt, Jochen ;
Mendling, Jan .
DATA & KNOWLEDGE ENGINEERING, 2023, 145
[3]   Neural networks generative models for time series [J].
Gatta, Federico ;
Giampaolo, Fabio ;
Prezioso, Edoardo ;
Mei, Gang ;
Cuomo, Salvatore ;
Piccialli, Francesco .
JOURNAL OF KING SAUD UNIVERSITY-COMPUTER AND INFORMATION SCIENCES, 2022, 34 (10) :7920-7939
[4]  
Gretton A, 2012, J MACH LEARN RES, V13, P723
[5]   Distance measure with improved lower bound for multivariate time series [J].
Li, Hailin .
PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2017, 468 :622-637
[6]   Adaptively constrained dynamic time warping for time series classification and clustering [J].
Li, Huanhuan ;
Liu, Jingxian ;
Yang, Zaili ;
Liu, Ryan Wen ;
Wu, Kefeng ;
Wan, Yuan .
INFORMATION SCIENCES, 2020, 534 :97-116
[7]   A GAN-based method for time-dependent cloud workload generation [J].
Lin, Weiwei ;
Yao, Kun ;
Zeng, Lan ;
Liu, Fagui ;
Shan, Chun ;
Hong, Xiaobin .
JOURNAL OF PARALLEL AND DISTRIBUTED COMPUTING, 2022, 168 :33-44
[8]   VTGAN: hybrid generative adversarial networks for cloud workload prediction [J].
Maiyza, Aya. I. I. ;
Korany, Noha. O. O. ;
Banawan, Karim ;
Hassan, Hanan. A. A. ;
Sheta, Walaa. M. M. .
JOURNAL OF CLOUD COMPUTING-ADVANCES SYSTEMS AND APPLICATIONS, 2023, 12 (01)
[9]  
Meert Wannes, 2020, Zenodo
[10]  
Muller M., 2007, Information Retrieval for Music and Motion, P69, DOI 10.1007/978-3-540-74048-34