An Elliptic Problem with Unbounded Coefficients and Two Singularities

被引:0
作者
Bouhlal, A. [1 ]
机构
[1] Univ Chouaib Doukkali, Fac Sci Jurid Econ & Sociales, Lab Rech Gest Econ & Sci Sociales, El Jadida, Morocco
关键词
Nonlinear elliptic equations; Maximum principle; Weak solutions; Singular elliptic equations; Existence of solutions; Regularity; Euler-Lagrange equation; LOWER ORDER TERM; DIRICHLET PROBLEM; EQUATIONS;
D O I
10.1007/s40840-023-01464-8
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we study the existence and regularity of solutions to quasilinear elliptic equations having quadratic growth with respect to the gradient and two singularities.
引用
收藏
页数:24
相关论文
共 50 条
[31]   Cores for parabolic operators with unbounded coefficients [J].
Lorenzi, Luca ;
Zamboni, Alessandro .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2009, 246 (07) :2724-2761
[32]   On a degenerate singular elliptic problem [J].
Garain, Prashanta .
MATHEMATISCHE NACHRICHTEN, 2022, 295 (07) :1354-1377
[33]   On Some Nonhomogeneous Elliptic Problems in Unbounded Domains [J].
Candela, A. M. ;
Cerami, G. ;
Palmieri, G. .
ADVANCED NONLINEAR STUDIES, 2009, 9 (04) :625-637
[34]   On the existence of solutions of the first boundary value problem for elliptic equations on unbounded domains [J].
Beklaryan, A. L. .
RUSSIAN JOURNAL OF MATHEMATICAL PHYSICS, 2012, 19 (04) :509-510
[35]   Existence and multiplicity for an elliptic problem with critical growth in the gradient and sign-changing coefficients [J].
De Coster, Colette ;
Fernandez, Antonio J. .
CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2020, 59 (03)
[36]   The Caffarelli Alternative in Measure for the Nondivergence Form Elliptic Obstacle Problem with Principal Coefficients inVMO [J].
Blank, Ivan ;
Teka, Kubrom .
COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 2014, 39 (02) :321-353
[37]   Solvability of the Dirichlet Problem for Elliptic Equations in Weighted Sobolev Spaces on Unbounded Domains [J].
Serena Boccia ;
Sara Monsurrò ;
Maria Transirico .
Boundary Value Problems, 2008
[38]   The oblique derivative problem for nonlinear elliptic equations of second order in unbounded domains [J].
Wen, Guochun ;
Xu, Zuoliang .
MATHEMATICAL SCIENCES, 2012, 6 (01)
[39]   On the existence of solutions of the first boundary value problem for elliptic equations on unbounded domains [J].
A. L. Beklaryan .
Russian Journal of Mathematical Physics, 2012, 19 :509-510
[40]   Quasilinear elliptic problem in anisotropic Orlicz-Sobolev space on unbounded domain [J].
Wronski, Karol .
ANNALI DI MATEMATICA PURA ED APPLICATA, 2025, 204 (01) :147-161