EXISTENCE AND CONTROLLABILITY FOR NEUTRAL PARTIAL DIFFERENTIAL INCLUSIONS NONDENSELLY DEFINED ON A HALF-LINE

被引:0
作者
Anh, Nguyen Thi Van [1 ,2 ]
Yen, Bui Thi Hai [3 ]
机构
[1] Hanoi Natl Univ Educ, Dept Math, 136 Xuan Thuy, Hanoi, Vietnam
[2] Vietnam Acad Sci & Technol, Inst Math, 18 Hoang Quoc Viet, Hanoi, Vietnam
[3] Hoa Lu Univ, Dept Math, Ninh Nhat, Ninh Binh, Vietnam
关键词
Hille-Yosida operators; neutral differential inclusions; multivalued maps; fixed point arguments; controllability; EQUATIONS;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this article, we study the existence of the integral solution to the neutral functional differential inclusion (d)/(dt )Dyt - AD(yt) - Lyt E F(t, yt), for a.e. t E J := [0, infinity), y(0) = phi E C-E = C([-r, 0]; E), r > 0,and the controllability of the corresponding neutral inclusion (d)/D-dt (yt) - AD(yt) - L-yt E F(t, y(t)) + B-u(t), for a.e. t E J, y(0) = phi E C-E,n a half-line via the nonlinear alternative of Leray-Schauder type for con-tractive multivalued mappings given by Frigon. We illustrate our results with applications to a neutral partial differential inclusion with diffusion, and to a neutral functional partial differential equation with obstacle constrains.
引用
收藏
页数:23
相关论文
共 39 条
[1]   A class of linear partial neutral functional differential equations with nondense domain [J].
Adimy, M ;
Ezzinbi, K .
JOURNAL OF DIFFERENTIAL EQUATIONS, 1998, 147 (02) :285-332
[2]  
ADIMY M, 1999, DIFF EQUAT, V7, P371
[3]   Bohr-Neugebauer type theorem for some partial neutral functional differential equations [J].
Adimy, Mostafa ;
Elazzouzi, Abdelhai ;
Ezzinbi, Khalil .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2007, 66 (05) :1145-1160
[4]  
Adimy M, 2014, ELECTRON J DIFFER EQ
[5]  
[Anonymous], 1994, Resenhas
[6]  
[Anonymous], 1983, SEMIGROUPS LINEAR OP
[7]  
[Anonymous], 2001, Canadian Applied Mathematics Quarterly
[8]  
ARENDT W, 1987, P LOND MATH SOC, V54, P321
[9]  
Arendt W, 2011, MG MATH, V96, pIX, DOI 10.1007/978-3-0348-0087-7
[10]  
Barbu V, 2010, SPRINGER MONOGR MATH, P1, DOI 10.1007/978-1-4419-5542-5