A review on poly lactic acid (PLA) as a biodegradable polymer

被引:341
|
作者
Taib, Nur-Azzah Afifah Binti [1 ]
Rahman, Md Rezaur [1 ]
Huda, Durul [2 ]
Kuok, Kuok King [3 ]
Hamdan, Sinin [1 ]
Bin Bakri, Muhammad Khusairy [1 ]
Bin Julaihi, Muhammad Rafiq Mirza [3 ]
Khan, Afrasyab [4 ]
机构
[1] Univ Malaysia Sarawak, Fac Engn, Jalan Datuk Mohammad Musa, Sarawak 94300, Malaysia
[2] Swinburne Univ Technol, Dept Mech Engn & Prod Design Engn, Hawthorn, Vic 3122, Australia
[3] Swinburne Univ Technol, Fac Engn Comp & Sci, Sarawak Campus,Jalan Simpa, Sarawak 93400, Malaysia
[4] South Ural State Univ, Inst Engn & Technol, Dept Hydraul & Hydraul & Pneumat Syst, Lenin Prospect 76, Chelyabinsk 454080, Russia
关键词
Poly lactic acid; Biodegradable; Polymer; Plastics; Composites; Market; WASTE;
D O I
10.1007/s00289-022-04160-y
中图分类号
O63 [高分子化学(高聚物)];
学科分类号
070305 ; 080501 ; 081704 ;
摘要
Biodegradable plastics are among the most promising materials to replace conventional petroleum-based plastics that have caused many adverse impacts on the environment, such as pollution (land, water, etc.) and global warming. Among a range of biodegradable plastics, poly lactic acid (PLA) is not only widely available but also safe to be decomposed after its usage without polluting the environment. PLA is also in parity with other conventional plastics such as PP, PET in terms of various properties suitable for industrial usage such as mechanical, physical, biocompatibility and processability. Thus, PLA has become the most used biopolymers in many industries such as agriculture, automotive and packaging by having these characteristics. Its higher demand has contributed to a stable increment in the global PLA market. In fact, over the years, the market for PLA has grown up and will keep on expanding in the future. Overall, the PLA-based bioplastic would be an excellent substitute for the existing conventional plastics in various applications, hence will serve to protect the environment not only from pollution but also work as a sustainable and economical product. This paper will review all the recent related works and literature on PLA as the biodegradable material regarding its properties, usability, productivity and substitute.
引用
收藏
页码:1179 / 1213
页数:35
相关论文
共 50 条
  • [21] Properties of a Biodegradable Ternary Blend of Thermoplastic Starch (TPS), Poly(ε-Caprolactone) (PCL) and Poly(Lactic Acid) (PLA)
    Vitor Brait Carmona
    Ana Carolina Corrêa
    José Manoel Marconcini
    Luis Henrique Capparelli Mattoso
    Journal of Polymers and the Environment, 2015, 23 : 83 - 89
  • [22] Mechanical properties of biodegradable composites from poly lactic acid (PLA) and microcrystalline cellulose (MCC)
    Mathew, Aji P.
    Oksman, Kristiina
    Sain, Mohini
    Journal of Applied Polymer Science, 2005, 97 (05): : 2014 - 2025
  • [23] High Performance and Fully Biodegradable Poly (lactic acid) (PLA) Composites Modified by Poly (Butylene Adipate-co-terephthalate) (PBAT): a Review
    Wang X.
    Shi M.
    Yu X.
    Peng S.
    Zhao X.
    Cailiao Daobao/Materials Reports, 2019, 33 (06): : 1897 - 1909
  • [24] Biodegradable polymer blends of Poly(L-lactic acid) and gelatinized starch
    Park, JW
    Im, SS
    Kim, SH
    Kim, YH
    POLYMER ENGINEERING AND SCIENCE, 2000, 40 (12): : 2539 - 2550
  • [25] Characterization and processing of Biodegradable polymer blends of poly(lactic acid) with poly(butylene succinate adipate)
    Lee, S
    Lee, JW
    KOREA-AUSTRALIA RHEOLOGY JOURNAL, 2005, 17 (02) : 71 - 77
  • [26] Overview of Poly(lactic acid) (PLA) Fibre
    Avinc, Ozan
    Khoddami, Akbar
    FIBRE CHEMISTRY, 2009, 41 (06) : 391 - 401
  • [27] Strategies and techniques for improving heat resistance and mechanical performances of poly(lactic acid) (PLA) biodegradable materials
    Zhao, Xipo
    Liu, Jinchao
    Li, Juncheng
    Liang, Xinyu
    Zhou, Weiyi
    Peng, Shaoxian
    INTERNATIONAL JOURNAL OF BIOLOGICAL MACROMOLECULES, 2022, 218 : 115 - 134
  • [28] Growth of ZnO nanorods on biodegradable poly (lactic acid) (PLA) substrates by low temperature solution method
    Akshaykranth, A.
    Rao, T. Venkatappa
    Kumar, R. Rakesh
    MATERIALS LETTERS, 2020, 259
  • [29] Poly(lactic acid) (PLA) Based Tear Resistant and Biodegradable Flexible Films by Blown Film Extrusion
    Mallegni, Norma
    Thanh Vu Phuong
    Coltelli, Maria-Beatrice
    Cinelli, Patrizia
    Lazzeri, Andrea
    MATERIALS, 2018, 11 (01):
  • [30] Properties and characterization of biodegradable poly(lactic acid) (PLA)/poly(ethylene glycol) (PEG) and PLA/PEG/organoclay: A study of crystallization kinetics, rheology, and compostability
    Mohapatra, Aswini Kumar
    Mohanty, Smita
    Nayak, Sanjay K.
    JOURNAL OF THERMOPLASTIC COMPOSITE MATERIALS, 2016, 29 (04) : 443 - 463