A review on poly lactic acid (PLA) as a biodegradable polymer

被引:351
作者
Taib, Nur-Azzah Afifah Binti [1 ]
Rahman, Md Rezaur [1 ]
Huda, Durul [2 ]
Kuok, Kuok King [3 ]
Hamdan, Sinin [1 ]
Bin Bakri, Muhammad Khusairy [1 ]
Bin Julaihi, Muhammad Rafiq Mirza [3 ]
Khan, Afrasyab [4 ]
机构
[1] Univ Malaysia Sarawak, Fac Engn, Jalan Datuk Mohammad Musa, Sarawak 94300, Malaysia
[2] Swinburne Univ Technol, Dept Mech Engn & Prod Design Engn, Hawthorn, Vic 3122, Australia
[3] Swinburne Univ Technol, Fac Engn Comp & Sci, Sarawak Campus,Jalan Simpa, Sarawak 93400, Malaysia
[4] South Ural State Univ, Inst Engn & Technol, Dept Hydraul & Hydraul & Pneumat Syst, Lenin Prospect 76, Chelyabinsk 454080, Russia
关键词
Poly lactic acid; Biodegradable; Polymer; Plastics; Composites; Market; WASTE;
D O I
10.1007/s00289-022-04160-y
中图分类号
O63 [高分子化学(高聚物)];
学科分类号
070305 ; 080501 ; 081704 ;
摘要
Biodegradable plastics are among the most promising materials to replace conventional petroleum-based plastics that have caused many adverse impacts on the environment, such as pollution (land, water, etc.) and global warming. Among a range of biodegradable plastics, poly lactic acid (PLA) is not only widely available but also safe to be decomposed after its usage without polluting the environment. PLA is also in parity with other conventional plastics such as PP, PET in terms of various properties suitable for industrial usage such as mechanical, physical, biocompatibility and processability. Thus, PLA has become the most used biopolymers in many industries such as agriculture, automotive and packaging by having these characteristics. Its higher demand has contributed to a stable increment in the global PLA market. In fact, over the years, the market for PLA has grown up and will keep on expanding in the future. Overall, the PLA-based bioplastic would be an excellent substitute for the existing conventional plastics in various applications, hence will serve to protect the environment not only from pollution but also work as a sustainable and economical product. This paper will review all the recent related works and literature on PLA as the biodegradable material regarding its properties, usability, productivity and substitute.
引用
收藏
页码:1179 / 1213
页数:35
相关论文
共 59 条
  • [1] Review of the Applications of Biocomposites in the Automotive Industry
    Akampumuza, Obed
    Wambua, Paul. M.
    Ahmed, Azzam
    Li, Wei
    Qin, Xiao-Hong
    [J]. POLYMER COMPOSITES, 2017, 38 (11) : 2553 - 2569
  • [2] Alsaheb RamziA. Abd., 2015, J CHEM PHARM RES, V7, P51, DOI [10.3390/polym14091874, DOI 10.3390/POLYM14091874]
  • [3] Ardebili H, 2019, MATER PR ELECT APPL, P183, DOI 10.1016/B978-0-12-811978-5.00004-3
  • [4] Arjmandi R., 2017, Green Biocomposites: Design and Applications, P193, DOI DOI 10.1007/978-3-319-49382-4_9
  • [5] Awasthi Arun Kumar, 2017, IOP Conference Series: Materials Science and Engineering, V263, DOI 10.1088/1757-899X/263/2/022024
  • [6] Belcher SL, 2017, APPL PLASTICS ENG HD, P265
  • [7] Poly(lactic acid)-Based Materials for Automotive Applications
    Bouzouita, Amani
    Notta-Cuvier, Delphine
    Raquez, Jean-Marie
    Lauro, Franck
    Dubois, Philippe
    [J]. INDUSTRIAL APPLICATIONS OF POLY(LACTIC ACID), 2018, 282 : 177 - 219
  • [8] A Perspective on Polylactic Acid-Based Polymers Use for Nanoparticles Synthesis and Applications
    Casalini, Tommaso
    Rossi, Filippo
    Castrovinci, Andrea
    Perale, Giuseppe
    [J]. FRONTIERS IN BIOENGINEERING AND BIOTECHNOLOGY, 2019, 7
  • [9] Poly(lactic acid)-Mass production, processing, industrial applications, and end of life
    Castro-Aguirre, E.
    Iniguez-Franco, F.
    Samsudin, H.
    Fang, X.
    Auras, R.
    [J]. ADVANCED DRUG DELIVERY REVIEWS, 2016, 107 : 333 - 366
  • [10] Plastics Derived from Biological Sources: Present and Future: A Technical and Environmental Review
    Chen, Guo-Qiang
    Patel, Martin K.
    [J]. CHEMICAL REVIEWS, 2012, 112 (04) : 2082 - 2099