Rationally designed C3N4/TiO2 (anatase/brookite) heterojunction for enhanced photocatalytic hydrogen generation under visible light

被引:9
作者
Martinez-Garcia, H. [1 ]
Salazar-Marin, D. [1 ]
Collins-Martinez, V. [2 ]
Torres-Torres, J. G. [1 ]
Kesarla, M. K. [3 ]
Jaramillo-Quintero, O. A. [4 ]
Hernandez-Como, N. [5 ]
Oza, Goldie [6 ]
Ortiz-Chi, F. [7 ]
Diaz-Real, J. A. [6 ]
Godavarthi, S. [7 ]
机构
[1] Univ Juarez Autonoma Tabasco, Ctr Invest Ciencia & Tecnol Aplicada Tabasco CICTA, Cunduacan 86690, Tabasco, Mexico
[2] Ctr Invest Mat Avanzados, Dept Ingn & Quim Mat, Miguel Cervantes 120, Chihuahua 31136, Mexico
[3] Univ Nacl Autonoma Mexico, Inst Ciencias Fis, Cuernavaca 62210, Morelos, Mexico
[4] Univ Nacl Autonoma Mexico, Inst Energias Renovables, Privada Xochicalco S N, Temixco 62580, Mor, Mexico
[5] Inst Politecn Nacl, Ctr Nanociencias & Micro & Nanotecnol, Mexico City, Mexico
[6] Ctr Invest & Desarrollo Tecnol Electroquim, Parque Tecnol Queretaro, Queretaro 76703, Mexico
[7] Univ Juarez Autonoma Tabasco, Div Academ Ciencias Basicas, Investigadoras Investigadores Mexico, Cunduacan 86690, Tabasco, Mexico
关键词
TiO2; Z-scheme; Band off set; Band alignment; WATER; TIO2; G-C3N4;
D O I
10.1016/j.ceramint.2023.08.084
中图分类号
TQ174 [陶瓷工业]; TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
In this study, C3N4 was prepared using the polycondensation method, and TiO2 (ansate/Brookite) was synthesized using the solvothermal method. These materials were subsequently utilized to prepare C3N4/TiO2 heterojunction materials via the photoanchoring method, with the aim of improving photocatalytic hydrogen production. The physical, chemical, and optical properties of the composites were investigated to verify the formation of heterojunctions, as well as to assess the impact of varying levels of C3N4 content (1%, 5%, and 10%) in the C3N4/TiO2 composite on hydrogen production. Notably, the composite with 5% C3N4 demonstrated superior photocatalytic hydrogen production (approximately 692 mu mol h-1 g-1), and the underlying reasons were elucidated using photoelectrochemical characterization. To establish the band alignment of C3N4 and TiO2 before and after contact, a comprehensive array of techniques was employed, encompassing Kelvin force microscopy to acquire work functions, UV-Vis spectral analysis to ascertain band gaps, XPS valence spectra to identify the Valence Band Maxima, and the Kraut method to calculate Band Offsets. These analyses revealed that the formation of the heterojunction is staggered in nature. Finally, utilization of ESR analysis has conclusively verified that the charge transfer mechanism inherent in the C3N4/TiO2 heterojunction adheres to the Z-scheme.
引用
收藏
页码:33901 / 33911
页数:11
相关论文
共 45 条
[1]   Hydrogen from photo-catalytic water splitting process: A review [J].
Ahmad, H. ;
Kamarudin, S. K. ;
Minggu, L. J. ;
Kassim, M. .
RENEWABLE & SUSTAINABLE ENERGY REVIEWS, 2015, 43 :599-610
[2]   Photocatalytic activity of anatase titanium dioxide nanostructures prepared by reactive magnetron sputtering technique [J].
Al-Oubidy, Esraa A. ;
Kadhim, Firas J. .
OPTICAL AND QUANTUM ELECTRONICS, 2019, 51 (01)
[3]   Photocatalytic degradation of organic pollutants using TiO2-based photocatalysts: A review [J].
Chen, Dongjie ;
Cheng, Yanling ;
Zhou, Nan ;
Chen, Paul ;
Wang, Yunpu ;
Li, Kun ;
Huo, Shuhao ;
Cheng, Pengfei ;
Peng, Peng ;
Zhang, Renchuang ;
Wang, Lu ;
Liu, Hui ;
Liu, Yuhuan ;
Ruan, Roger .
JOURNAL OF CLEANER PRODUCTION, 2020, 268
[4]   Electrochemical reduction on nanostructured TiO2 for enhanced photoelectrocatalytic oxidation [J].
Diaz-Real, J. A. ;
Elsaesser, P. ;
Holm, T. ;
Merida, W. .
ELECTROCHIMICA ACTA, 2020, 329
[5]   Impact of the anodization time on the photocatalytic activity of TiO2 nanotubes [J].
Diaz-Real, Jesus A. ;
Dubed-Bandomo, Geyla C. ;
Galindo-de-la-Rosa, Juan ;
Arriaga, Luis G. ;
Ledesma-Garcia, Janet ;
Alonso-Vante, Nicolas .
BEILSTEIN JOURNAL OF NANOTECHNOLOGY, 2018, 9 :2628-2643
[6]   Enhanced visible light photocatalytic activity and oxidation ability of porous graphene-like g-C3N4 nanosheets via thermal exfoliation [J].
Dong, Fan ;
Li, Yuhan ;
Wang, Zhenyu ;
Ho, Wing-Kei .
APPLIED SURFACE SCIENCE, 2015, 358 :393-403
[7]   XPS and FTIR surface characterization of TiO2 particles used in polymer encapsulation [J].
Erdem, B ;
Hunsicker, RA ;
Simmons, GW ;
Sudol, ED ;
Dimonie, VL ;
El-Aasser, MS .
LANGMUIR, 2001, 17 (09) :2664-2669
[8]   ELECTROCHEMICAL PHOTOLYSIS OF WATER AT A SEMICONDUCTOR ELECTRODE [J].
FUJISHIMA, A ;
HONDA, K .
NATURE, 1972, 238 (5358) :37-+
[9]   High surface area g-C3N4 and g-C3N4-TiO2 photocatalytic activity under UV and Visible light: Impact of individual component [J].
Gahlot, Sweta ;
Dappozze, Frederic ;
Mishra, Shashank ;
Guillard, Chantal .
JOURNAL OF ENVIRONMENTAL CHEMICAL ENGINEERING, 2021, 9 (04)
[10]   Probing the Thermal Deoxygenation of Graphene Oxide Using High-Resolution In Situ X-ray-Based Spectroscopies [J].
Ganguly, Abhijit ;
Sharma, Surbhi ;
Papakonstantinou, Pagona ;
Hamilton, Jeremy .
JOURNAL OF PHYSICAL CHEMISTRY C, 2011, 115 (34) :17009-17019