Exploring Cancer Dependency Map genes and immune subtypes in colon cancer, in which TIGD1 contributes to colon cancer progression

被引:0
作者
Zhang, Guoyang [1 ,2 ]
Feng, Zongfeng [1 ,2 ]
Zeng, Qingwen [1 ,2 ]
Huang, Ping [3 ]
机构
[1] Nanchang Univ, Dept Gen Surg, Affiliated Hosp 1, Nanchang, Peoples R China
[2] Nanchang Univ, Med Innovat Ctr, Affiliated Hosp 1, Nanchang, Peoples R China
[3] Nanchang Univ, Dept Nutr, Affiliated Hosp 1, Nanchang, Peoples R China
来源
AGING-US | 2023年 / 15卷 / 13期
关键词
*Equal contribution; colon cancer; cancer dependency map; CRISPR-Cas9; prognostic signature; CDM immune subtypes; DNA METABOLISM; SUPPRESSES; NOP14; CELLS;
D O I
暂无
中图分类号
Q2 [细胞生物学];
学科分类号
071009 ; 090102 ;
摘要
Background: Tumour-dependent genes identified in CRISPR-Cas9 screens have been widely reported in Cancer Dependency Maps (CDMs). CDM-derived tumour-dependent genes play an important role in tumorigenesis and progression; however, they have not been investigated in colon cancer (CC). Methods: CDM genes overexpressed in CC were identified from the TCGA-COAD dataset and CDM platform. A CDM signature and prognostic nomogram were constructed by Lasso Cox regression and multivariate Cox analyses. A weighted correlation network analysis (WGCNA) and consensus clustering were used to define coexpressed genes with CDM risk scores and to determine two new immune subtypes. A comprehensive investigation was performed between the two subtypes and immune regulation, the immune microenvironment and the impact of immunotherapy. Results: First, 1304 overexpressed CDM genes were identified. Then, a CDM signature with five cancerdependent genes (MMS19, NOP14, POLRMT, SNAPC5 and TIGD1) and a prognostic nomogram were constructed, and they demonstrated robust predictive performance and a close relationship with clinical characteristics in different CC datasets. Patients with high CDM risk scores showed worse survival outcome and weaker response to chemotherapy. Additionally, TIGD1 genes were oncogenes that affected the CC cell cycle, according to cell functional experiments that involved the suppression of the TIGD1 gene. Furthermore, WGCNA and consensus clustering were used to define coexpressed genes with CDM risk scores and to determine two new immune subtypes. Finally, systematic investigations were conducted with the relationship between the CDM subtypes and immune regulation. Conclusions: This study constructed a CDM signature consisting of five risk genes that predict survival in CC patients. In addition, the immune subtypes provided valuable insights into immunotherapy for CC patients. TIGD1, as an oncogene, is independent prognostic factors for CC, and contributes to CC progression.
引用
收藏
页码:6400 / 6428
页数:29
相关论文
共 53 条
[1]   Impact of Tumor Side on Clinical Outcomes in Stage II and III Colon Cancer With Known Microsatellite Instability Status [J].
Akce, Mehmet ;
Zakka, Katerina ;
Jiang, Renjian ;
Williamson, Shayla ;
Alese, Olatunji B. ;
Shaib, Walid L. ;
Wu, Christina ;
Behera, Madhusmita ;
El-Rayes, Bassel F. .
FRONTIERS IN ONCOLOGY, 2021, 11
[2]   Comprehensive analysis of differentially expressed long noncoding RNAs, miRNAs and mRNAs in breast cancer brain metastasis [J].
An, Meng ;
Zang, Xiaowen ;
Wang, Jimin ;
Kang, Jie ;
Tan, Xiaoyu ;
Fu, Bo .
EPIGENOMICS, 2021, 13 (14) :1113-1128
[3]  
Barua S, 2015, EPIGENOMICS-UK, V7, P85, DOI [10.2217/EPI.14.71, 10.2217/epi.14.71]
[4]   Estimating the population abundance of tissue-infiltrating immune and stromal cell populations using gene expression [J].
Becht, Etienne ;
Giraldo, Nicolas A. ;
Lacroix, Laetitia ;
Buttard, Benedicte ;
Elarouci, Nabila ;
Petitprez, Florent ;
Selves, Janick ;
Laurent-Puig, Pierre ;
Sautes-Fridman, Catherine ;
Fridman, Wolf H. ;
de Reynies, Aurelien .
GENOME BIOLOGY, 2016, 17
[5]   Prioritization of cancer therapeutic targets using CRISPR-Cas9 screens [J].
Behan, Fiona M. ;
Iorio, Francesco ;
Picco, Gabriele ;
Goncalves, Emanuel ;
Beaver, Charlotte M. ;
Migliardi, Giorgia ;
Santos, Rita ;
Rao, Yanhua ;
Sassi, Francesco ;
Pinnelli, Marika ;
Ansari, Rizwan ;
Harper, Sarah ;
Jackson, David Adam ;
Mcrae, Rebecca ;
Pooley, Rachel ;
Wilkinson, Piers ;
van der Meer, Dieudonne ;
Dow, David ;
Buser-Doepner, Carolyn ;
Bertotti, Andrea ;
Trusolino, Livio ;
Stronach, Euan A. ;
Saez-Rodriguez, Julio ;
Yusa, Kosuke ;
Garnett, Mathew J. .
NATURE, 2019, 568 (7753) :511-+
[6]   Small-molecule inhibitors of human mitochondrial DNA transcription [J].
Bonekamp, Nina A. ;
Peter, Bradley ;
Hillen, Hauke S. ;
Felser, Andrea ;
Bergbrede, Tim ;
Choidas, Axel ;
Horn, Moritz ;
Unger, Anke ;
Di Lucrezia, Raffaella ;
Atanassov, Ilian ;
Li, Xinping ;
Koch, Uwe ;
Menninger, Sascha ;
Boros, Joanna ;
Habenberger, Peter ;
Giavalisco, Patrick ;
Cramer, Patrick ;
Denzel, Martin S. ;
Nussbaumer, Peter ;
Klebl, Bert ;
Falkenberg, Maria ;
Gustafsson, Claes M. ;
Larsson, Nils-Goeran .
NATURE, 2020, 588 (7839) :712-+
[7]   Pan-cancer Immunogenomic Analyses Reveal Genotype-Immunophenotype Relationships and Predictors of Response to Checkpoint Blockade [J].
Charoentong, Pornpimol ;
Finotello, Francesca ;
Angelova, Mihaela ;
Mayer, Clemens ;
Efremova, Mirjana ;
Rieder, Dietmar ;
Hackl, Hubert ;
Trajanoski, Zlatko .
CELL REPORTS, 2017, 18 (01) :248-262
[8]   Predicting and characterizing a cancer dependency map of tumors with deep learning [J].
Chiu, Yu-Chiao ;
Zheng, Siyuan ;
Wang, Li-Ju ;
Iskra, Brian S. ;
Rao, Manjeet K. ;
Houghton, Peter J. ;
Huang, Yufei ;
Chen, Yidong .
SCIENCE ADVANCES, 2021, 7 (34)
[9]   A first-generation pediatric cancer dependency map [J].
Dharia, Neekesh, V ;
Kugener, Guillaume ;
Guenther, Lillian M. ;
Malone, Clare F. ;
Durbin, Adam D. ;
Hong, Andrew L. ;
Howard, Thomas P. ;
Bandopadhayay, Pratiti ;
Wechsler, Caroline S. ;
Fung, Iris ;
Warren, Allison C. ;
Dempster, Joshua M. ;
Krill-Burger, John M. ;
Paolella, Brenton R. ;
Moh, Phoebe ;
Jha, Nishant ;
Tang, Andrew ;
Montgomery, Philip ;
Boehm, Jesse S. ;
Hahn, William C. ;
Roberts, Charles W. M. ;
McFarland, James M. ;
Tsherniak, Aviad ;
Golub, Todd R. ;
Vazquez, Francisca ;
Stegmaier, Kimberly .
NATURE GENETICS, 2021, 53 (04) :529-+
[10]   Pancreatic Cancer Progression Relies upon Mutant p53-Induced Oncogenic Signaling Mediated by NOP14 [J].
Du, Yongxing ;
Liu, Ziwen ;
You, Lei ;
Hou, Pengjiao ;
Ren, Xiaoxia ;
Jiao, Tao ;
Zhao, Wenjing ;
Li, Zongze ;
Shu, Hong ;
Liu, Changzheng ;
Zhao, Yupei .
CANCER RESEARCH, 2017, 77 (10) :2661-2673