Efficient Visual Tracking with Exemplar Transformers

被引:93
作者
Blatter, Philippe [1 ]
Kanakis, Menelaos [1 ]
Danelljan, Martin [1 ]
Van Gool, Luc [1 ,2 ]
机构
[1] Swiss Fed Inst Technol, Zurich, Switzerland
[2] Katholieke Univ Leuven, Leuven, Belgium
来源
2023 IEEE/CVF WINTER CONFERENCE ON APPLICATIONS OF COMPUTER VISION (WACV) | 2023年
关键词
D O I
10.1109/WACV56688.2023.00162
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The design of more complex and powerful neural network models has significantly advanced the state-of-the-art in visual object tracking. These advances can be attributed to deeper networks, or the introduction of new building blocks, such as transformers. However, in the pursuit of increased tracking performance, runtime is often hindered. Furthermore, efficient tracking architectures have received surprisingly little attention. In this paper, we introduce the Exemplar Transformer, a transformer module utilizing a single instance level attention layer for realtime visual object tracking. E.T.Track, our visual tracker that incorporates Exemplar Transformer modules, runs at 47 FPS on a CPU. This is up to 8x faster than other transformer-based models. When compared to lightweight trackers that can operate in realtime on standard CPUs, E.T.Track consistently outperforms all other methods on the LaSOT [16], OTB-100 [52], NFS [27], TrackingNet [36], and VOT-ST2020 [29] datasets. Code and models are available at https://github.com/pblatter/ettrack.
引用
收藏
页码:1571 / 1581
页数:11
相关论文
共 61 条
[1]  
[Anonymous], IEEE I CONF COMP VIS, DOI DOI 10.1109/ICCV.2015.123
[2]  
[Anonymous], PYTR
[3]  
Ba J.L., 2016, Layer Normalization
[4]   Attention Augmented Convolutional Networks [J].
Bello, Irwan ;
Zoph, Barret ;
Vaswani, Ashish ;
Shlens, Jonathon ;
Le, Quoc V. .
2019 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV 2019), 2019, :3285-3294
[5]   Fully-Convolutional Siamese Networks for Object Tracking [J].
Bertinetto, Luca ;
Valmadre, Jack ;
Henriques, Joao F. ;
Vedaldi, Andrea ;
Torr, Philip H. S. .
COMPUTER VISION - ECCV 2016 WORKSHOPS, PT II, 2016, 9914 :850-865
[6]   Learning Discriminative Model Prediction for Tracking [J].
Bhat, Goutam ;
Danelljan, Martin ;
Van Gool, Luc ;
Timofte, Radu .
2019 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV 2019), 2019, :6181-6190
[7]  
Bruggemann David, 2021, ARXIV210413874
[8]   End-to-End Object Detection with Transformers [J].
Carion, Nicolas ;
Massa, Francisco ;
Synnaeve, Gabriel ;
Usunier, Nicolas ;
Kirillov, Alexander ;
Zagoruyko, Sergey .
COMPUTER VISION - ECCV 2020, PT I, 2020, 12346 :213-229
[9]   Transformer Tracking [J].
Chen, Xin ;
Yan, Bin ;
Zhu, Jiawen ;
Wang, Dong ;
Yang, Xiaoyun ;
Lu, Huchuan .
2021 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION, CVPR 2021, 2021, :8122-8131
[10]  
Choromanski K., 2020, Masked language modeling for proteins via linearly scalable long-context transformers