An agnostic analysis of the human AlphaFold2 proteome using local protein conformations

被引:6
|
作者
de Brevern, Alexandre G. [1 ,2 ,3 ,4 ]
机构
[1] Univ Paris Cite, F-75014 Paris, France
[2] Univ Antilles, F-75014 Paris, France
[3] Univ Reunion, DSIMB Bioinformat Team, BIGR, INSERM,UMR S 1134, F-75014 Paris, France
[4] Paris Cite, INSERM, UMR S 1134, DSIMB Bioinformat Team, 8 Rue Maria Helena Vieira Silva, F-75014 Paris, France
关键词
Secondary structure; Helix; Sheet; turn; polyproline II; Structural alphabet; protein structure; Deep learning; STRUCTURE PREDICTION; BETA-BULGES; SECONDARY STRUCTURE; POTENTIALS; ACCURACY; BACKBONE; FEATURES; PROGRAM; BIOLOGY; HELICES;
D O I
10.1016/j.biochi.2022.11.009
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Knowledge of the 3D structure of proteins is a valuable asset for understanding their precise biological mechanisms. However, the cost of production of 3D structures and experimental difficulties limit their obtaining. The proposal of 3D structural models is consequently an appealing alternative. The release of the AlphaFold Deep Learning approach has revolutionized the field. The recent near-complete human proteome proposal makes it possible to analyse large amounts of data and evaluate the results of the approach in greater depth. The 3D human proteome was thus analysed in light of the classic secondary structures, and many less-used protein local conformations (PolyProline II helices, type of g-turns, of 0 -turns and of 0-bulges, curvature of the helices, and a structural alphabet). Without questioning the global quality of the approach, this analysis highlights certain local conformations, which maybe poorly pre-dicted and they could therefore be better addressed.(c) 2022 Elsevier B.V. and Societe Francaise de Biochimie et Biologie Moleculaire (SFBBM). All rights reserved.
引用
收藏
页码:11 / 19
页数:9
相关论文
共 50 条
  • [1] Space exploration: finding new protein conformations using AlphaFold2
    Osman, Sara
    NATURE STRUCTURAL & MOLECULAR BIOLOGY, 2023, 30 (12) : 1835 - 1835
  • [2] Benchmarking reverse docking through AlphaFold2 human proteome
    Luo, Qing
    Wang, Sheng
    Li, Hoi Yeung
    Zheng, Liangzhen
    Mu, Yuguang
    Guo, Jingjing
    PROTEIN SCIENCE, 2024, 33 (10)
  • [3] Predicting relative populations of protein conformations without a physics engine using AlphaFold2
    da Silva, Gabriel M.
    Cui, Jennifer Y.
    Dalgarno, David C.
    Lisi, George P.
    Rubenstein, Brenda M.
    BIOPHYSICAL JOURNAL, 2024, 123 (03) : 202A - 202A
  • [4] Protein Loop Modeling Using AlphaFold2
    Wang, Junlin
    Wang, Wenbo
    Shang, Yi
    IEEE-ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS, 2023, 20 (05) : 3306 - 3313
  • [5] How AlphaFold2 shaped the structural coverage of the human transmembrane proteome
    Márton A. Jambrich
    Gabor E. Tusnady
    Laszlo Dobson
    Scientific Reports, 13
  • [6] How AlphaFold2 shaped the structural coverage of the human transmembrane proteome
    Marton A. Jambrich
    Gabor E. Tusnady
    Laszlo Dobson
    SCIENTIFIC REPORTS, 2023, 13 (01)
  • [7] Utilization of AlphaFold2 to Predict MFS Protein Conformations after Selective Mutation
    Xiao, Qingjie
    Xu, Mengxue
    Wang, Weiwei
    Wu, Tingting
    Zhang, Weizhe
    Qin, Wenming
    Sun, Bo
    INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2022, 23 (13)
  • [8] Predicting protein conformational motions using energetic frustration analysis and AlphaFold2
    Guan, Xingyue
    Tang, Qian-Yuan
    Ren, Weitong
    Chen, Mingchen
    Wang, Wei
    Wolynes, Peter G.
    Li, Wenfei
    PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2024, 121 (35)
  • [9] Predicting multiple conformations via sequence clustering and AlphaFold2
    Wayment-Steele, Hannah K.
    Ojoawo, Adedolapo
    Otten, Renee
    Apitz, Julia M.
    Pitsawong, Warintra
    Homberger, Marc
    Ovchinnikov, Sergey
    Colwell, Lucy
    Kern, Dorothee
    NATURE, 2024, 625 (7996) : 832 - 839
  • [10] AFsample2 predicts multiple conformations and ensembles with AlphaFold2
    Kalakoti, Yogesh
    Wallner, Bjorn
    COMMUNICATIONS BIOLOGY, 2025, 8 (01)