Preparation of High Conductivity Hydrogenated Silicon-Doped Diamond and MOSFET

被引:2
作者
He, Qi [1 ]
Zhang, Jinfeng [2 ]
Zhu, Zihui [1 ]
Ren, Zeyang [1 ,2 ]
Yu, Xinxin [3 ]
Zhang, Jincheng [1 ]
Su, Kai [1 ]
Li, Yijiang [4 ]
Xu, Qihui [1 ]
Li, Junpeng [4 ]
Hao, Yue [1 ]
机构
[1] Xidian Univ, Sch Microelect, Natl Key Lab Wide Bandgap Semicond Devices & Integ, Xian 710071, Peoples R China
[2] Xidian Wuhu Res Inst, Wuhu 241002, Peoples R China
[3] Nanjing Elect Devices Inst, Sci & Technol Monolith Integrated Circuits & Modul, Nanjing 210016, Peoples R China
[4] Xidian Wuhu Res Inst, Wuhu 241002, Peoples R China
关键词
C-Si; diamond; field-effect-transistor; hydrogenated; Si-doped; OUTPUT POWER-DENSITY;
D O I
10.1109/TED.2024.3369582
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Hydrogenated silicon-doped (Si-doped) diamond was prepared by magnetron sputtering silicon on IIa CVD diamond surface and following Si etch/diffuse process at 1000 degrees C in a hydrogen atmosphere in MPCVD. The silicon doping concentration was higher than 1 x 1018 cm-3 among the depth of 25 nm. The hydrogenated Si-doped diamond surface demonstrated the simultaneous presence of C-H and C-Si bonds in the X-ray photoelectron spectroscopy (XPS) results, and a square resistance of 5500 St/sq with the hole concentration of 1.4 x 1013 cm-2 by contact Hall test. MOSFET fabricated on the hydrogenated Si-doped diamond using traditional hydrogenated diamond device process showed decent device performance. The gold/hydrogenated Si-doped diamond electrodes showed ohmic contact resistivity of 1.02 x 10-5 Q<middle dot>cm-2 and a contact resistance of 2.4 St<middle dot>mm. Besides, the 1.5-mu m MOSFET device with a threshold voltage of 1.4 V delivered the maximum drain current, ON-resistance, maximum transconductance, and ON/OFF ratio of -270.5 mA/mm, 39.6 St<middle dot>mm, 42.4 mS/mm and 8 orders of magnitude. The gate breakdown field and the OFF-state source -drain breakdown field reached 8.4 and 2.17 MV/cm, respectively. The hydrogenated Si-doped diamond provided a promising route for the preparation of high-performance diamond FET devices.
引用
收藏
页码:2329 / 2334
页数:6
相关论文
共 28 条
[21]   Hydrogen-terminated polycrystalline diamond MOSFETs with Al2O3 passivation layers grown by atomic layer deposition at different temperatures [J].
Ren, Zeyang ;
Yuan, Guansheng ;
Zhang, Jinfeng ;
Xu, Lei ;
Zhang, Jincheng ;
Chen, Wanjiao ;
Hao, Yue .
AIP ADVANCES, 2018, 8 (06)
[22]   3659-V NO2 p-Type Doped Diamond MOSFETs on Misoriented Heteroepitaxial Diamond Substrates [J].
Saha, Niloy Chandra ;
Kim, Seong-Woo ;
Koyama, Koji ;
Oishi, Toshiyuki ;
Kasu, Makoto .
IEEE ELECTRON DEVICE LETTERS, 2023, 44 (01) :112-115
[23]   875-MW/cm2 Low-Resistance NO2 p-Type Doped Chemical Mechanical Planarized Diamond MOSFETs [J].
Saha, Niloy Chandra ;
Kim, Seong-Woo ;
Oishi, Toshiyuki ;
Kasu, Makoto .
IEEE ELECTRON DEVICE LETTERS, 2022, 43 (05) :777-780
[24]   345-MW/cm2 2608-V NO2 p-Type Doped Diamond MOSFETs With an Al2O3 Passivation Overlayer on Heteroepitaxial Diamond [J].
Saha, Niloy Chandra ;
Kim, Seong-Woo ;
Oishi, Toshiyuki ;
Kawamata, Yuki ;
Koyama, Koji ;
Kasu, Makoto .
IEEE ELECTRON DEVICE LETTERS, 2021, 42 (06) :903-906
[25]   Progress of structural and electronic properties of diamond: a mini review [J].
Yang, Hongchao ;
Ma, Yandong ;
Dai, Ying .
FUNCTIONAL DIAMOND, 2022, 1 (01) :150-159
[26]   Hydrogen-terminated diamond MOSFETs on (001) single crystal diamond with state of the art high RF power density [J].
Yu, Cui ;
Zhou, Chuangjie ;
Guo, Jianchao ;
He, Zezhao ;
Ma, Mengyu ;
Yu, Hao ;
Song, Xubo ;
Bu, Aimin ;
Feng, Zhihong .
FUNCTIONAL DIAMOND, 2022, 2 (01) :64-70
[27]   1.26 W/mm Output Power Density at 10 GHz for Si3N4 Passivated H-Terminated Diamond MOSFETs [J].
Yu, Xinxin ;
Hu, Wenxiao ;
Zhou, Jianjun ;
Wu, Yun ;
Tao, Ran ;
Liu, Bin ;
Tao, Tao ;
Wei, Zhongxia ;
Kong, Yuechan ;
Ye, Jiandong ;
Li, Zhonghui ;
Chen, Tangsheng ;
Zheng, Youdou .
IEEE TRANSACTIONS ON ELECTRON DEVICES, 2021, 68 (10) :5068-5072
[28]   A High Frequency Hydrogen-Terminated Diamond MISFET With fT/fmax of 70/80 GHz [J].
Yu, Xinxin ;
Zhou, Jianjun ;
Qi, Chengjun ;
Cao, Zhengyi ;
Kong, Yuechan ;
Chen, Tangsheng .
IEEE ELECTRON DEVICE LETTERS, 2018, 39 (09) :1373-1376