Markov Bases: A 25 Year Update

被引:1
作者
Almendra-Hernandez, Felix [1 ]
De Loera, Jesus A. [1 ]
Petrovic, Sonja [2 ]
机构
[1] Univ Calif Davis, Dept Math, Davis, CA USA
[2] IIT, Dept Appl Math, Chicago, IL 60616 USA
关键词
Log-affine model; Log-linear model; Markov bases; MCMC; Sampling; CONDITIONAL INFERENCE; ALGEBRAIC STATISTICS; POSITIVE MARGINS; TABLES; MODEL; GRAPH; CHAIN;
D O I
10.1080/01621459.2024.2310181
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
In this article, we evaluate the challenges and best practices associated with the Markov bases approach to sampling from conditional distributions. We provide insights and clarifications after 25 years of the publication of the Fundamental theorem for Markov bases by Diaconis and Sturmfels. In addition to a literature review, we prove three new results on the complexity of Markov bases in hierarchical models, relaxations of the fibers in log-linear models, and limitations of partial sets of moves in providing an irreducible Markov chain. Supplementary materials for this article are available online.
引用
收藏
页码:1671 / 1686
页数:16
相关论文
共 77 条
[1]  
*4TI2 TEAM, 4TI2 SOFTW PACK ALG
[2]  
Agresti A., 2013, Categorical data analysis, V3
[3]  
Andersen HC., 2007, J SFDS, V148, P5
[4]  
[Anonymous], 1980, Discrete Statistical Models with Social Science Applications
[5]   Minimal basis for a connected Markov chain over 3 x 3 x K contingency tables with fixed two-dimensional marginals [J].
Aoki, S ;
Takemura, A .
AUSTRALIAN & NEW ZEALAND JOURNAL OF STATISTICS, 2003, 45 (02) :229-249
[6]  
Aoki S., 2003, TECHNICAL REPORT MET
[7]  
AOKI S, 2012, SPRINGER SERIES STAT
[8]   Indispensable monomials of toric ideals and Markov bases [J].
Aoki, Satoshi ;
Takemura, Akimichi ;
Yoshida, Ruriko .
JOURNAL OF SYMBOLIC COMPUTATION, 2008, 43 (6-7) :490-507
[9]   de Finetti Priors using Markov chain Monte Carlo computations [J].
Bacallado, Sergio ;
Diaconis, Persi ;
Holmes, Susan .
STATISTICS AND COMPUTING, 2015, 25 (04) :797-808
[10]  
Bakenhus M., ALGEBRAIC STAT