Kernel-based learning of stable nonlinear state-space models

被引:0
|
作者
Shakib, M. F. [1 ,2 ]
Toth, R. [3 ,4 ]
Pogromsky, A. Y. [2 ]
Pavlov, A. [5 ]
van de Wouw, N. [2 ]
机构
[1] Imperial Coll London, Dept Elect & Elect Engn, London, England
[2] Eindhoven Univ Technol, Dept Mech Engn, Eindhoven, Netherlands
[3] Eindhoven Univ Technol, Dept Elect Engn, Eindhoven, Netherlands
[4] Inst Comp Sci & Control, Budapest, Hungary
[5] NTNU, Dept Geosci & Petr, Trondheim, Norway
基金
英国工程与自然科学研究理事会;
关键词
SYSTEM-IDENTIFICATION; STABILITY; DYNAMICS;
D O I
10.1109/CDC49753.2023.1038331
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This paper presents a kernel-based learning approach for black-box nonlinear state-space models with a focus on enforcing model stability. Specifically, we aim to enforce a stability notion called convergence which guarantees that, for any bounded input from a user-defined class, the model responses converge to a unique steady-state solution that remains within a positively invariant set that is user-defined and bounded. Such a form of model stability provides robustness of the learned models to new inputs unseen during the training phase. The problem is cast as a convex optimization problem with convex constraints that enforce the targeted convergence property. The benefits of the approach are illustrated by a simulation example.
引用
收藏
页码:2897 / 2902
页数:6
相关论文
共 50 条
  • [21] Kernel-based learning of hierarchical multilabel classification models
    Rousu, Juho
    Saunders, Craig
    Szedmak, Sandor
    Shawe-Taylor, John
    JOURNAL OF MACHINE LEARNING RESEARCH, 2006, 7 : 1601 - 1626
  • [22] Kernel-based learning of hierarchical multilabel classification models
    Department of Computer Science, PO Box 68, FI-00014 Helsinki, Finland
    不详
    J. Mach. Learn. Res., 2006, (1601-1626):
  • [23] Nonlinear state-space models with state-dependent variances
    Stroud, JR
    Müller, P
    Polson, NG
    JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2003, 98 (462) : 377 - 386
  • [24] State inference in variational Bayesian nonlinear state-space models
    Raiko, T
    Tornio, M
    Honkela, A
    Karhunen, J
    INDEPENDENT COMPONENT ANALYSIS AND BLIND SIGNAL SEPARATION, PROCEEDINGS, 2006, 3889 : 222 - 229
  • [25] Gaussian Variational State Estimation for Nonlinear State-Space Models
    Courts, Jarrad
    Wills, Adrian
    Schon, Thomas
    IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2021, 69 : 5979 - 5993
  • [26] Learning Nonlinear State-Space Models Using Smooth Particle-Filter-Based Likelihood Approximations
    Svensson, Andreas
    Lindsten, Fredrik
    Schon, Thomas B.
    IFAC PAPERSONLINE, 2018, 51 (15): : 652 - 657
  • [27] Decoupling nonlinear state-space models: case studies
    Dreesen, Philippe
    Esfahani, Alireza Fakhrizadeh
    Stoev, Julian
    Tiels, Koen
    Schoukens, Johan
    PROCEEDINGS OF ISMA2016 INTERNATIONAL CONFERENCE ON NOISE AND VIBRATION ENGINEERING AND USD2016 INTERNATIONAL CONFERENCE ON UNCERTAINTY IN STRUCTURAL DYNAMICS, 2016, : 2639 - 2646
  • [28] Robust identification approach for nonlinear state-space models
    Liu, Xin
    Yang, Xianqiang
    NEUROCOMPUTING, 2019, 333 : 329 - 338
  • [29] Parameter estimation in a class of nonlinear state-space models
    Enescu, Mihai
    Koivunen, Visa
    2005 IEEE/SP 13TH WORKSHOP ON STATISTICAL SIGNAL PROCESSING (SSP), VOLS 1 AND 2, 2005, : 193 - 196
  • [30] Decoupling Multivariate Polynomials for Nonlinear State-Space Models
    Decuyper, Jan
    Dreesen, Philippe
    Schoukens, Johan
    Runacres, Mark C.
    Tiels, Koen
    IEEE CONTROL SYSTEMS LETTERS, 2019, 3 (03): : 745 - 750