Object Pose Estimation From RGB-D Images With Affordance-Instance Segmentation Constraint for Semantic Robot Manipulation

被引:2
作者
Wang, Zhongli [1 ]
Tian, Guohui [2 ]
机构
[1] Hebei Univ Technol, State Key Lab Reliabil & Intelligence Elect Equip, Tianjin 300130, Peoples R China
[2] Shandong Univ, Sch Control Sci & Engn, Jinan 250061, Peoples R China
基金
中国国家自然科学基金;
关键词
Affordances; Pose estimation; Feature extraction; Robots; Point cloud compression; Semantics; Three-dimensional displays; object affordance; segmentation network; synthetic dataset; affordance-based point pair features; RECOGNITION; NETWORK;
D O I
10.1109/LRA.2023.3333693
中图分类号
TP24 [机器人技术];
学科分类号
080202 ; 1405 ;
摘要
Object pose estimation is a crucial task for semantic robot manipulation involving the detection of suitable manipulation regions. Given the diversity of object shapes and scene complexities, object pose estimation remains an immense challenge. Accordingly, the letter presents a new approach for object pose estimation from RGB-D images, utilizing the affordance-instance segmentation constraint for semantic robot manipulation. An Object Affordance-Instance Segmentation Network (OAISNet) is designed to improve the segmentation accuracy of both object affordances and object instances. The training of the OAISNet necessitates a substantial quantity of data. A dataset automatic generation method is designed to quickly generate data with multiple labels, reducing the burden of manual annotation. Finally, object affordances are combined with the point pair features to establish affordance-based point pair features for object pose estimation. Experimental results show that the OAISNet improves the performance of object segmentation, and the affordance-based object pose estimation approach improves the accuracy and efficiency of object pose estimation.
引用
收藏
页码:595 / 602
页数:8
相关论文
共 38 条
[1]   A Survey of Visual Affordance Recognition Based on Deep Learning [J].
Chen, Dongpan ;
Kong, Dehui ;
Li, Jinghua ;
Wang, Shaofan ;
Yin, Baocai .
IEEE TRANSACTIONS ON BIG DATA, 2023, 9 (06) :1458-1476
[2]   Dexterous Grasping by Manipulability Selection for Mobile Manipulator With Visual Guidance [J].
Chen, Fei ;
Selvaggio, Mario ;
Caldwell, Darwin G. .
IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, 2019, 15 (02) :1202-1210
[3]   EPro-PnP: Generalized End-to-End Probabilistic Perspective-n-Points for Monocular Object Pose Estimation [J].
Chen, Hansheng ;
Wang, Pichao ;
Wang, Fan ;
Tian, Wei ;
Xiong, Lu ;
Li, Hao .
2022 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2022), 2022, :2771-2780
[4]   DeepLab: Semantic Image Segmentation with Deep Convolutional Nets, Atrous Convolution, and Fully Connected CRFs [J].
Chen, Liang-Chieh ;
Papandreou, George ;
Kokkinos, Iasonas ;
Murphy, Kevin ;
Yuille, Alan L. .
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2018, 40 (04) :834-848
[5]  
Choi C, 2012, IEEE INT C INT ROBOT, P3342, DOI 10.1109/IROS.2012.6386067
[6]   Speedup 3-D Texture-Less Object Recognition Against Self-Occlusion for Intelligent Manufacturing [J].
Cong, Yang ;
Tian, Dongying ;
Feng, Yun ;
Fan, Baojie ;
Yu, Haibin .
IEEE TRANSACTIONS ON CYBERNETICS, 2019, 49 (11) :3887-3897
[7]   Model Globally, Match Locally: Efficient and Robust 3D Object Recognition [J].
Drost, Bertram ;
Ulrich, Markus ;
Navab, Nassir ;
Ilic, Slobodan .
2010 IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2010, :998-1005
[8]   A Fast Point Cloud Recognition Algorithm Based on Keypoint Pair Feature [J].
Ge, Zhexue ;
Shen, Xiaolei ;
Gao, Quanqin ;
Sun, Haiyang ;
Tang, Xiaoan ;
Cai, Qingyu .
SENSORS, 2022, 22 (16)
[9]  
Gibson JamesJ., 1979, The Ecological Approach to Visual Perception
[10]  
He KM, 2020, IEEE T PATTERN ANAL, V42, P386, DOI [10.1109/TPAMI.2018.2844175, 10.1109/ICCV.2017.322]