Current Challenges and Future Promise for Use of Extracellular Matrix Scaffold to Achieve the Whole Organ Tissue Engineering Moonshot

被引:7
作者
Somasekhar, Likitha [1 ]
Griffiths, Leigh G. [1 ,2 ]
机构
[1] Mayo Clin, Dept Cardiovasc Med, 200 First St SW,Stabile 4-58, Rochester, MN 55905 USA
[2] Mayo Clin, Med, 200 First St SW,Stabile 4-58, Rochester, MN 55905 USA
基金
美国国家卫生研究院;
关键词
tissue engineering; extracellular matrix; scaffold; tissue engineered; vascular; MESENCHYMAL STEM-CELLS; RECELLULARIZED LIVER GRAFT; ORTHOTOPIC TRANSPLANTATION; 3-DIMENSIONAL SCAFFOLD; BOVINE PERICARDIUM; PROGENITOR CELLS; KIDNEY SCAFFOLD; HUMAN HEART; DECELLULARIZATION; PERFUSION;
D O I
10.1093/stcltm/szad046
中图分类号
Q813 [细胞工程];
学科分类号
摘要
Whole organ tissue engineering encompasses a variety of approaches, including 3D printed tissues, cell-based self-assembly, and cellular incorporation into synthetic or xenogeneic extracellular matrix (ECM) scaffolds. This review article addresses the importance of whole organ tissue engineering for various solid organ applications, focusing on the use of extracellular (ECM) matrix scaffolds in such engineering endeavors. In this work, we focus on the emerging barriers to translation of ECM scaffold-based tissue-engineered organs and highlight potential solutions to overcome the primary challenges in the field. The 3 main factors that are essential for developing ECM scaffold-based whole organs are (1) recapitulation of a functional vascular tree, (2) delivery and orientation of cells into parenchymal void spaces left vacant in the scaffold during the antigen elimination and associated cellular removal processes, and (3) driving differentiation of delivered cells toward the appropriate site-specific lineage. The insights discussed in this review will allow the potential of allogeneic or xenogeneic ECM scaffolds to be fully maximized for future whole organ tissue-engineering efforts.
引用
收藏
页码:588 / 602
页数:15
相关论文
共 132 条
[81]  
OPTN, 2020, ORG PROC TRANSPL NET
[82]   Perfusion-decellularized matrix: using nature's platform to engineer a bioartificial heart [J].
Ott, Harald C. ;
Matthiesen, Thomas S. ;
Goh, Saik-Kia ;
Black, Lauren D. ;
Kren, Stefan M. ;
Netoff, Theoden I. ;
Taylor, Doris A. .
NATURE MEDICINE, 2008, 14 (02) :213-221
[83]   Regeneration and orthotopic transplantation of a bioartificial lung [J].
Ott, Harald C. ;
Clippinger, Ben ;
Conrad, Claudius ;
Schuetz, Christian ;
Pomerantseva, Irina ;
Ikonomou, Laertis ;
Kotton, Darrell ;
Vacanti, Joseph P. .
NATURE MEDICINE, 2010, 16 (08) :927-U131
[84]   Xenogeneic cardiac extracellular matrix scaffolds with or without seeded mesenchymal stem cells exhibit distinct in vivo immunosuppressive and regenerative properties [J].
Papalamprou, Angela ;
Chang, Chia Wei ;
Vapniarsky, Natalia ;
Clark, Alycia ;
Walker, Naomi ;
Griffiths, Leigh G. .
ACTA BIOMATERIALIA, 2016, 45 :155-168
[85]   Cardiac Extracellular Matrix Scaffold Generated Using Sarcomeric Disassembly and Antigen Removal [J].
Papalamprou, Angela ;
Griffiths, Leigh G. .
ANNALS OF BIOMEDICAL ENGINEERING, 2016, 44 (04) :1047-1060
[86]   Increasing capillary diameter and the incorporation of gelatin enhance axon outgrowth in alginate-based anisotropic hydrogels [J].
Pawar, Kiran ;
Mueller, Rainer ;
Caioni, Massimiliano ;
Prang, Peter ;
Bogdahn, Ulrich ;
Kunz, Werner ;
Weidner, Norbert .
ACTA BIOMATERIALIA, 2011, 7 (07) :2826-2834
[87]   Tissue-Engineered Lungs for in Vivo Implantation [J].
Petersen, Thomas H. ;
Calle, Elizabeth A. ;
Zhao, Liping ;
Lee, Eun Jung ;
Gui, Liqiong ;
Raredon, MichaSam B. ;
Gavrilov, Kseniya ;
Yi, Tai ;
Zhuang, Zhen W. ;
Breuer, Christopher ;
Herzog, Erica ;
Niklason, Laura E. .
SCIENCE, 2010, 329 (5991) :538-541
[88]   Human embryonic stem cell-derived cardiovascular progenitor cells efficiently colonize in bFGF-tethered natural matrix to construct contracting humanized rat hearts [J].
Rajabi, Sarah ;
Pahlavan, Sara ;
Ashtiani, Mohammad Kazemi ;
Ansari, Hassan ;
Abbasalizadeh, Saeed ;
Sayahpour, Forough Azam ;
Varzideh, Fahimeh ;
Kostin, Sawa ;
Aghdami, Nasser ;
Braun, Thomas ;
Baharvand, Hossein .
BIOMATERIALS, 2018, 154 :99-112
[89]   Engineering pulmonary vasculature in decellularized rat and human lungs [J].
Ren, Xi ;
Moser, Philipp T. ;
Gilpin, Sarah E. ;
Okamoto, Tatsuya ;
Wu, Tong ;
Tapias, Luis F. ;
Mercier, Francois E. ;
Xiong, Linjie ;
Ghawi, Raja ;
Scadden, David T. ;
Mathisen, Douglas J. ;
Ott, Harald C. .
NATURE BIOTECHNOLOGY, 2015, 33 (10) :1097-+