Deep-learning prostate cancer detection and segmentation on biparametric versus multiparametric magnetic resonance imaging: Added value of dynamic contrast-enhanced imaging

被引:2
作者
Matsuoka, Yoh [1 ,2 ,6 ]
Ueno, Yoshihiko [3 ]
Uehara, Sho [1 ]
Tanaka, Hiroshi [4 ]
Kobayashi, Masaki [1 ]
Tanaka, Hajime [1 ]
Yoshida, Soichiro [1 ]
Yokoyama, Minato [1 ]
Kumazawa, Itsuo [5 ]
Fujii, Yasuhisa [1 ]
机构
[1] Tokyo Med & Dent Univ, Dept Urol, Tokyo, Japan
[2] Saitama Canc Ctr, Dept Urol, Saitama, Japan
[3] Tokyo Inst Technol, Dept Informat & Commun Engn, Yokohama, Kanagawa, Japan
[4] Ochanomizu Surugadai Clin, Dept Radiol, Tokyo, Japan
[5] Tokyo Inst Technol, Inst Innovat Res, Lab Future Interdisciplinary Res Sci & Technol, Yokohama, Kanagawa, Japan
[6] Saitama Canc Ctr, Dept Urol, 780 Komuro, Ina, Saitama 3620806, Japan
关键词
biparametric MRI; deep learning; dynamic contrast-enhanced imaging; multiparametric MRI; prostate cancer; DIAGNOSTIC-ACCURACY; CLASSIFICATION; VALIDATION; SEQUENCES; SYSTEM; MRI;
D O I
10.1111/iju.15280
中图分类号
R5 [内科学]; R69 [泌尿科学(泌尿生殖系疾病)];
学科分类号
1002 ; 100201 ;
摘要
Objectives: To develop diagnostic algorithms of multisequence prostate magnetic resonance imaging for cancer detection and segmentation using deep learning and explore values of dynamic contrast-enhanced imaging in multiparametric imaging, compared with biparametric imaging.Methods: We collected 3227 multiparametric imaging sets from 332 patients, including 218 cancer patients (291 biopsy-proven foci) and 114 noncancer patients. Diagnostic algorithms of T2-weighted, T2-weighted plus dynamic contrast-enhanced, biparametric, and multiparametric imaging were built using 2578 sets, and their performance for clinically significant cancer was evaluated using 649 sets.Results: Biparametric and multiparametric imaging had following region-based performance: sensitivity of 71.9% and 74.8% (p = 0.394) and positive predictive value of 61.3% and 74.8% (p = 0.013), respectively. In side-specific analyses of cancer images, the specificity was 72.6% and 89.5% (p < 0.001) and the negative predictive value was 78.9% and 83.5% (p = 0.364), respectively. False-negative cancer on multiparametric imaging was smaller (p = 0.002) and more dominant with grade group & LE;2 (p = 0.028) than true positive foci. In the peripheral zone, false-positive regions on biparametric imaging turned out to be true negative on multiparametric imaging more frequently compared with the transition zone (78.3% vs. 47.2%, p = 0.018). In contrast, T2-weighted plus dynamic contrast-enhanced imaging had lower specificity than T2-weighted imaging (41.1% vs. 51.6%, p = 0.042).Conclusions: When using deep learning, multiparametric imaging provides superior performance to biparametric imaging in the specificity and positive predictive value, especially in the peripheral zone. Dynamic contrast-enhanced imaging helps reduce overdiagnosis in multiparametric imaging.
引用
收藏
页码:1103 / 1111
页数:9
相关论文
共 30 条
  • [1] Diagnostic accuracy of multi-parametric MRI and TRUS biopsy in prostate cancer (PROMIS): a paired validating confirmatory study
    Ahmed, Hashim U.
    Bosaily, Ahmed El-Shater
    Brown, Louise C.
    Gabe, Rhian
    Kaplan, Richard
    Parmar, Mahesh K.
    Collaco-Moraes, Yolanda
    Ward, Katie
    Hindley, Richard G.
    Freeman, Alex
    Kirkham, Alex P.
    Oldroyd, Robert
    Parker, Chris
    Emberton, Mark
    [J]. LANCET, 2017, 389 (10071) : 815 - 822
  • [2] Semi-automatic classification of prostate cancer on multi-parametric MR imaging using a multi-channel 3D convolutional neural network
    Aldoj, Nader
    Lukas, Steffen
    Dewey, Marc
    Penzkofer, Tobias
    [J]. EUROPEAN RADIOLOGY, 2020, 30 (02) : 1243 - 1253
  • [3] Characterization of Prostate Cancer with Gleason Score of at Least 7 by Using Quantitative Multiparametric MR Imaging: Validation of a Computer-aided Diagnosis System in Patients Referred for Prostate Biopsy
    Au Hoang Dinh
    Melodelima, Christelle
    Souchon, Remi
    Moldovan, Paul C.
    Bratan, Flavie
    Pagnoux, Gaele
    Mege-Lechevallier, Florence
    Ruffion, Alain
    Crouzet, Sebastien
    Colombel, Marc
    Rouviere, Olivier
    [J]. RADIOLOGY, 2018, 287 (02) : 525 - 533
  • [4] ESUR prostate MR guidelines 2012
    Barentsz, Jelle O.
    Richenberg, Jonathan
    Clements, Richard
    Choyke, Peter
    Verma, Sadhna
    Villeirs, Geert
    Rouviere, Olivier
    Logager, Vibeke
    Futterer, Jurgen J.
    [J]. EUROPEAN RADIOLOGY, 2012, 22 (04) : 746 - 757
  • [5] Selective identification and localization of indolent and aggressive prostate cancers via CorrSigNIA: an MRI-pathology correlation and deep learning framework
    Bhattacharya, Indrani
    Seetharaman, Arun
    Kunder, Christian
    Shao, Wei
    Chen, Leo C.
    Soerensen, Simon J. C.
    Wang, Jeffrey B.
    Teslovich, Nikola C.
    Fan, Richard E.
    Ghanouni, Pejman
    Brooks, James D.
    Sonn, Geoffrey A.
    Rusu, Mirabela
    [J]. MEDICAL IMAGE ANALYSIS, 2022, 75
  • [6] Additional Value of Dynamic Contrast-enhanced Sequences in Multiparametric Prostate Magnetic Resonance Imaging: Data from the PROMIS Study
    Bosaily, Ahmed El-Shater
    Frangou, Elena
    Ahmed, Hashim U.
    Emberton, Mark
    Punwani, Shonit
    Kaplan, Richard
    Brown, Louise C.
    Freeman, Alex
    Jameson, Charles
    Hindley, Richard
    Peppercorn, Delia
    Thrower, Andrew
    Winkler, Mathias
    Barwick, Tara
    Stewart, Victoria
    Burns-Cox, Nick
    Burn, Paul
    Ghei, Maneesh
    Kumaradevan, Jeevan
    Prasad, Raj
    Ash-Miles, Janice
    Shergill, Iqbal
    Agarwal, Sanjay
    Rosario, Derek
    Salim, Ferekh
    Bott, Simon
    Evans, Hywel
    Henderson, Alastair
    Ghosh, Sukanya
    Dudderidge, Tim
    Smart, J.
    Tung, Ken
    Kirkham, Alexander
    [J]. EUROPEAN UROLOGY, 2020, 78 (04) : 503 - 511
  • [7] Diagnostic accuracy of biparametric vs multiparametric MRI in clinically significant prostate cancer: Comparison between readers with different experience
    Di Campli, Eleonora
    Pizzi, Andrea Delli
    Seccia, Barbara
    Cianci, Roberta
    d'Annibale, Martina
    Colasante, Antonella
    Cinalli, Sebastiano
    Castellan, Pietro
    Navarra, Riccardo
    Iantorno, Romina
    Gabrielli, Daniela
    Buffone, Angelica
    Caulo, Massimo
    Basilico, Raffaella
    [J]. EUROPEAN JOURNAL OF RADIOLOGY, 2018, 101 : 17 - 23
  • [8] Added value of diffusion-weighted images and dynamic contrast enhancement in multiparametric magnetic resonance imaging for the detection of clinically significant prostate cancer in the PICTURE trial
    Eldred-Evans, David
    Neves, Joana B.
    Simmons, Lucy A. M.
    Kanthabalan, Abi
    McCartan, Neil
    Shah, Taimur T.
    Arya, Manit
    Charman, Susan C.
    Freeman, Alex
    Moore, Caroline M.
    Punwani, Shonit
    Emberton, Mark
    Ahmed, Hashim U.
    [J]. BJU INTERNATIONAL, 2020, 125 (03) : 391 - 398
  • [9] Automatic classification of prostate cancer Gleason scores from multiparametric magnetic resonance images
    Fehr, Duc
    Veeraraghavan, Harini
    Wibmer, Andreas
    Gondo, Tatsuo
    Matsumoto, Kazuhiro
    Vargas, Herbert Alberto
    Sala, Evis
    Hricak, Hedvig
    Deasy, Joseph O.
    [J]. PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2015, 112 (46) : E6265 - E6273
  • [10] Validation of the Dominant Sequence Paradigm and Role of Dynamic Contrast-enhanced Imaging in PI-RADS Version 2
    Greer, Matthew D.
    Shih, Joanna H.
    Lay, Nathan
    Barrett, Tristan
    Bittencourt, Leonardo Kayat
    Borofsky, Samuel
    Kabakus, Ismail M.
    Law, Yan Mee
    Marko, Jamie
    Shebel, Haytham
    Mertan, Francesca V.
    Merino, Maria J.
    Wood, Bradford J.
    Pinto, Peter A.
    Summers, Ronald M.
    Choyke, Peter L.
    Turkbey, Baris
    [J]. RADIOLOGY, 2017, 285 (03) : 859 - 869