Haar Wavelet-Based Classification Method for Visual Information Processing Systems

被引:2
作者
Huan, Wang [1 ]
Shcherbakova, Galina [2 ]
Sachenko, Anatoliy [3 ,7 ]
Yan, Lingyu [4 ]
Volkova, Natalya [5 ]
Rusyn, Bohdan [6 ,7 ]
Molga, Agnieszka [7 ]
机构
[1] China Elect Power Res Inst, Wuhan 430071, Peoples R China
[2] Odessa Natl Polytech Univ, Dept Informat Syst, UA-65044 Odessa, Ukraine
[3] West Ukrainian Natl Univ, Res Inst Intelligent Comp Syst, UA-46009 Ternopol, Ukraine
[4] Hubei Univ Technol, Sch Comp Sci, Wuhan 430205, Peoples R China
[5] Odessa Natl Polytech Univ, Dept Appl Math & Informat Technol, UA-65044 Odessa, Ukraine
[6] NAS Ukraine, Dept Informat Technol Remote Sensing, Karpenko Physico Mech Inst, UA-79601 Lvov, Ukraine
[7] Kazimierz Pulaski Univ Technol & Humanities Radom, Dept Informat & Teleinformat, PL-26600 Radom, Poland
来源
APPLIED SCIENCES-BASEL | 2023年 / 13卷 / 09期
基金
中国国家自然科学基金;
关键词
classification method; wavelet transform; Haar wavelet function; visual information processing systems; Shannon entropy formula;
D O I
10.3390/app13095515
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Nowadays, the systems for visual information processing are significantly extending their application field. Moreover, an unsolved problem for such systems is that the classification procedure has often-conflicting requirements for performance and classification reliability. Therefore, the goal of the article is to develop the wavelet method for classifying the systems for visual information processing by evaluating the performance and informativeness of the adopted classification solutions. This method of classification uses the Haar wavelet functions with training and calculates the ranges of changes in the coefficients of the separating surfaces. The authors proposed to select the ranges of changes in these coefficients by employing the Shannon entropy formula for measuring the information content. A case study proved that such a method will significantly increase the speed of detecting the intervals of coefficient values. In addition, this enables us to justify the choice of the width of the ranges for the change of coefficients, solving the contradiction between the performance and reliability of the classifier.
引用
收藏
页数:11
相关论文
共 34 条
[1]  
Aggarwal C.C, 2015, Data Mining: The Textbook, P285, DOI [DOI 10.1007/978-3-319-14142-810, DOI 10.1007/978-3-319-14142-8]
[2]  
Altameemi H.G.A., 2022, INT J COMPUT, V21, P303, DOI [10.47839/ijc.21.3.2685, DOI 10.47839/IJC.21.3.2685]
[3]  
Anisimov B.V, 1993, RASPOZNAVANIE TSIFRO
[4]  
Babilunga O., 2015, ELECTROTECH COMPUT S, V19, P231, DOI [10.15276/eltecs.19.95.2015.51, DOI 10.15276/ELTECS.19.95.2015.51]
[5]   A Survey on Data Augmentation for Text Classification [J].
Bayer, Markus ;
Kaufhold, Marc-Andre ;
Reuter, Christian .
ACM COMPUTING SURVEYS, 2023, 55 (07)
[6]  
Bhattacharyya Sumanta, 2018, International Journal of Intelligent Systems Technologies and Applications, V17, P136
[7]   MEASUREMENT OF INFORMATION IN THE SUBSYSTEM OF INTERNAL CONTROL OF THE CONTROLLING SYSTEM OF ORGANIZATIONS OF THE AGRO-INDUSTRIAL COMPLEX [J].
Bychkova, Svetlana ;
Makarova, Nadezhda ;
Zhidkova, Elena .
ENTREPRENEURSHIP AND SUSTAINABILITY ISSUES, 2018, 6 (01) :35-43
[8]   A comparative analysis of multi-criteria decision-making methods [J].
Ceballos B. ;
Lamata M.T. ;
Pelta D.A. .
Progress in Artificial Intelligence, 2016, 5 (04) :315-322
[9]  
Chemerys O., 2021, RELIABILITY ENG COMP, VVolume 976, P261, DOI [10.1007/978-3-030-74556-1_16, DOI 10.1007/978-3-030-74556-1_16]
[10]   On the Meaningfulness of "Big Data Quality" (Invited Paper) [J].
Firmani, Donatella ;
Mecella, Massimo ;
Scannapieco, Monica ;
Batini, Carlo .
DATA SCIENCE AND ENGINEERING, 2016, 1 (01) :6-20