High-resolution modeling for criteria air pollutants and the associated air quality index in a metropolitan city

被引:17
作者
Wang, Yiyi [1 ,2 ]
Huang, Lei [2 ]
Huang, Conghong [3 ,4 ,5 ]
Hu, Jianlin [1 ,8 ]
Wang, Meng [5 ,6 ,7 ]
机构
[1] Nanjing Univ Informat Sci & Technol, Jiangsu Collaborat Innovat Ctr Atmospher Environm, Jiangsu Key Lab Atmospher Environm Monitoring & Po, 219 Ningliu Rd, Nanjing 210044, Peoples R China
[2] Nanjing Univ, Sch Environm, State Key Lab Pollut Control & Resource Reuse, Nanjing 210023, Peoples R China
[3] Nanjing Agr Univ, Coll Land Management, Nanjing 210095, Peoples R China
[4] Res Ctr Rural Land Resources Use & Consolidat, Natl & Local Joint Engn, Nanjing 210095, Peoples R China
[5] Univ Buffalo, Sch Publ Hlth & Hlth Profess, Dept Epidemiol & Environm Hlth, Buffalo, NY 14214 USA
[6] Univ Buffalo, RENEW Inst, Buffalo, NY USA
[7] Univ Washington, Sch Publ Hlth, Dept Environm & Occupat Hlth Sci, Seattle, WA USA
[8] Nanjing Univ Informat Sci & Technol, Sch Environm Sci & Engn, Nanjing 21004, Jiangsu, Peoples R China
基金
中国国家自然科学基金;
关键词
Spatiotemporal model; Air quality index; High resolution; Criteria air pollutants; LAND-USE REGRESSION; PM2.5; OZONE; CHINA; NO2; PM10;
D O I
10.1016/j.envint.2023.107752
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
The Air Quality Index (AQI), which jointly accounts for levels of criteria air pollutants relative to their guidelines, is largely reported at the city level. Little is known about the spatial patterns of the AQI in terms of the magnitude, temporal variability, and predominant air pollutant contributions at the hyperlocal scale within a city. To fill this research gap, we developed spatiotemporal models for each criteria air pollutant based on an advanced geostatistical framework and estimated daily AQI levels at 100-meter resolution in a metropolitan city in 2019. The model prediction ability (cross-validation, CV, Coefficient of determination, R-2, and root mean square error, RMSE) ranged from 0.43 and 1.86 mu g/m(3) for sulfur dioxide (SO2) to 0.92 and 6.25 mu g/m(3) for fine particulate matter (PM2.5) across the six air pollutants, leading to good performance in the subsequent AQI estimations (CV R-2 = 0.86, RMSE = 10.05). The AQI varies substantially over space at a fine scale and differs from the distributions of individual air pollutants. The unhealthy air quality (AQI > 100 over 75 days) spatial pattern was dominated by excessive ground-level ozone exposure in a large area. Our research provides a useful tool for accurately estimating AQI spatiotemporal variations for population health studies.
引用
收藏
页数:8
相关论文
共 23 条
[1]   Ambient air pollution and its influence on human health and welfare: an overview [J].
Almetwally, Alsaid Ahmed ;
Bin-Jumah, May ;
Allam, Ahmed A. .
ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH, 2020, 27 (20) :24815-24830
[2]   A Machine Learning Approach to Predict Air Quality in California [J].
Castelli, Mauro ;
Clemente, Fabiana Martins ;
Popovic, Ales ;
Silva, Sara ;
Vanneschi, Leonardo .
COMPLEXITY, 2020, 2020
[3]   A land use regression for predicting NO2 and PM10 concentrations in different seasons in Tianjin region, China [J].
Chen, Li ;
Bai, Zhipeng ;
Kong, Shaofei ;
Han, Bin ;
You, Yan ;
Ding, Xiao ;
Du, Shiyong ;
Liu, Aixia .
JOURNAL OF ENVIRONMENTAL SCIENCES, 2010, 22 (09) :1364-1373
[4]  
Fuentes M, 2007, MONOGR STAT APPL PRO, V107, P77
[5]   Spatial and temporal variability of PM2.5 and PM10 over the North China Plain and the Yangtze River Delta, China [J].
Hu, Jianlin ;
Wang, Yungang ;
Ying, Qi ;
Zhang, Hongliang .
ATMOSPHERIC ENVIRONMENT, 2014, 95 :598-609
[6]   Estimating 2013-2019 NO2 exposure with high spatiotemporal resolution in China using an ensemble model [J].
Huang, Conghong ;
Sun, Kang ;
Hu, Jianlin ;
Xue, Tao ;
Xu, Hao ;
Wang, Meng .
ENVIRONMENTAL POLLUTION, 2022, 292
[7]   High-Resolution Spatiotemporal Modeling for Ambient PM2.5 Exposure Assessment in China from 2013 to 2019 [J].
Huang, Conghong ;
Hu, Jianlin ;
Xue, Tao ;
Xu, Hao ;
Wang, Meng .
ENVIRONMENTAL SCIENCE & TECHNOLOGY, 2021, 55 (03) :2152-2162
[8]   Development of land use regression models for PM2.5, SO2, NO2 and O3 in Nanjing, China [J].
Huang, Lei ;
Zhang, Can ;
Bi, Jun .
ENVIRONMENTAL RESEARCH, 2017, 158 :542-552
[9]   A Unified Spatiotemporal Modeling Approach for Predicting Concentrations of Multiple Air Pollutants in the Multi-Ethnic Study of Atherosclerosis and Air Pollution [J].
Keller, Joshua P. ;
Olives, Casey ;
Kim, Sun-Young ;
Sheppard, Lianne ;
Sampson, Paul D. ;
Szpiro, Adam A. ;
Oron, Assaf P. ;
Lindstrom, Johan ;
Vedal, Sverre ;
Kaufman, Joel D. .
ENVIRONMENTAL HEALTH PERSPECTIVES, 2015, 123 (04) :301-309
[10]   Science objectives of the Ozone Monitoring Instrument [J].
Levelt, PF ;
Hilsenrath, E ;
Leppelmeier, GW ;
van den Oord, GHJ ;
Bhartia, PK ;
Tamminen, J ;
de Haan, JF ;
Veefkind, JP .
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2006, 44 (05) :1199-1208