Behavior as t → ∞ of Solutions of a Mixed Problem for a Hyperbolic Equation with Periodic Coefficients on the Semi-Axis

被引:5
作者
Matevossian, Hovik A. [1 ,2 ]
Smirnov, Vladimir Yu. [2 ]
机构
[1] Russian Acad Sci, Fed Res Ctr Comp Sci & Control, Moscow 119333, Russia
[2] Natl Res Univ MAI, Moscow Aviat Inst, Inst 3, Moscow 125993, Russia
来源
SYMMETRY-BASEL | 2023年 / 15卷 / 03期
关键词
asymptotic behavior; hyperbolic equation; periodic coefficients; initial boundary value problem; Schrodinger operator; ASYMPTOTIC-BEHAVIOR; CAUCHY-PROBLEM;
D O I
10.3390/sym15030777
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
In this paper, we consider the asymptotic behavior (as t -> infinity) of solutions as an initial boundary value problem for a second-order hyperbolic equation with periodic coefficients on the semi-axis (x>0). The main approach to studying the problem under consideration is based on the spectral theory of differential operators, as well as on the properties of the spectrum (sigma(H-0)) of the one-dimensional Schrodinger operator H-0 with periodic coefficients p(x) and q(x).
引用
收藏
页数:22
相关论文
共 32 条
[1]   About a question of intrinsic value theory. [J].
Ambarzumian, V. .
ZEITSCHRIFT FUR PHYSIK, 1929, 53 (9-10) :690-695
[3]   STURM-LIOUVILLE EIGENVALUES VIA A PHASE FUNCTION [J].
BAILEY, PB .
SIAM JOURNAL ON APPLIED MATHEMATICS, 1966, 14 (02) :242-&
[4]  
Coddington E. A., 1955, Theory of ordinary differential equations
[5]  
Eastham M. S. P., 1973, The spectral theory of periodic differential equations
[6]   SCHRODINGER EQUATION WITH A PERIODIC POTENTIAL [J].
EASTHAM, MSP .
PROCEEDINGS OF THE ROYAL SOCIETY OF EDINBURG SECTION A-MATHEMATICAL AND PHYSICAL SCIENCES, 1971, 69 :125-&
[7]   FLOQUET SOLUTIONS FOR THE 1-DIMENSIONAL QUASI-PERIODIC SCHRODINGER-EQUATION [J].
ELIASSON, LH .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1992, 146 (03) :447-482
[8]  
Firsova N.E., 1986, MAT SBORN, V130, P349, DOI [10.1070/SM1987v058n02ABEH003108, DOI 10.1070/SM1987V058N02ABEH003108]
[9]   DETERMINATION OF A HILLS EQUATION FROM ITS SPECTRUM [J].
GOLDBERG, W .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1975, 51 (03) :705-723
[10]   Impurity bands and quasi-Bloch waves for a one-dimensional model of modulated crystal [J].
Gosse, Laurent .
NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 2008, 9 (03) :927-948