CT Image Denoising and Deblurring With Deep Learning: Current Status and Perspectives

被引:19
作者
Lei, Yiming [1 ]
Niu, Chuang [2 ]
Zhang, Junping [1 ]
Wang, Ge [2 ]
Shan, Hongming [3 ,4 ]
机构
[1] Fudan Univ, Sch Comp Sci, Shanghai Key Lab Intelligent Informat Proc, Shanghai 200433, Peoples R China
[2] Rensselaer Polytech Inst, Biomed Imaging Ctr, Ctr Biotechnol & Interdisciplinary Studies, Ctr Computat Innovat,Dept Biomed Engn, Troy, NY 12180 USA
[3] Fudan Univ, Inst Sci & Technol Brain Inspired Intelligence, MOE Frontiers Ctr Brain Sci, Key Lab Computat Neurosci & Brain Inspired Intell, Shanghai 200433, Peoples R China
[4] Shanghai Ctr Brain Sci & Brain Inspired Technol, Shanghai 200031, Peoples R China
基金
中国国家自然科学基金;
关键词
Computed tomography; Noise reduction; Image denoising; Biomedical imaging; Task analysis; Deep learning; Image reconstruction; Computed tomography (CT); deep learning; image deblurring; image denoising; LOW-DOSE CT; GENERATIVE ADVERSARIAL NETWORK; ADMM ALGORITHM; SUPERRESOLUTION; NOISE; RECONSTRUCTION; MR; TRANSFORMER; DOMAIN;
D O I
10.1109/TRPMS.2023.3341903
中图分类号
R8 [特种医学]; R445 [影像诊断学];
学科分类号
1002 ; 100207 ; 1009 ;
摘要
This article reviews the deep learning methods for computed tomography image denoising and deblurring separately and simultaneously. Then, we discuss promising directions in this field, such as a combination with large-scale pretrained models and large language models. Currently, deep learning is revolutionizing medical imaging in a data-driven manner. With rapidly evolving learning paradigms, related algorithms and models are making rapid progress toward clinical applications.
引用
收藏
页码:153 / 172
页数:20
相关论文
共 190 条
[1]   K-SVD: An algorithm for designing overcomplete dictionaries for sparse representation [J].
Aharon, Michal ;
Elad, Michael ;
Bruckstein, Alfred .
IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2006, 54 (11) :4311-4322
[2]   Digital image restoration [J].
Banham, MR ;
Katsaggelos, AK .
IEEE SIGNAL PROCESSING MAGAZINE, 1997, 14 (02) :24-41
[3]  
Batson J, 2019, PR MACH LEARN RES, V97
[4]   Maximum a Posteriori Video Super-Resolution Using a New Multichannel Image Prior [J].
Belekos, Stefanos P. ;
Galatsanos, Nikolaos P. ;
Katsaggelos, Aggelos K. .
IEEE TRANSACTIONS ON IMAGE PROCESSING, 2010, 19 (06) :1451-1464
[5]   Self Supervised Low Dose Computed Tomography Image Denoising Using Invertible Network Exploiting Inter Slice Congruence [J].
Bera, Sutanu ;
Biswas, Prabir Kumar .
2023 IEEE/CVF WINTER CONFERENCE ON APPLICATIONS OF COMPUTER VISION (WACV), 2023, :5603-5612
[6]   Noise Conscious Training of Non Local Neural Network Powered by Self Attentive Spectral Normalized Markovian Patch GAN for Low Dose CT Denoising [J].
Bera, Sutanu ;
Biswas, Prabir Kumar .
IEEE TRANSACTIONS ON MEDICAL IMAGING, 2021, 40 (12) :3663-3673
[7]   A non-local algorithm for image denoising [J].
Buades, A ;
Coll, B ;
Morel, JM .
2005 IEEE COMPUTER SOCIETY CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION, VOL 2, PROCEEDINGS, 2005, :60-65
[8]   Non-Local Means Denoising [J].
Buades, Antoni ;
Coll, Bartomeu ;
Morel, Jean-Michel .
IMAGE PROCESSING ON LINE, 2011, 1 :208-212
[9]   Statistical Iterative CBCT Reconstruction Based on Neural Network [J].
Chen, Binbin ;
Xiang, Kai ;
Gong, Zaiwen ;
Wang, Jing ;
Tan, Shan .
IEEE TRANSACTIONS ON MEDICAL IMAGING, 2018, 37 (06) :1511-1521
[10]  
Chen C., 2024, IEEETrans.Med.Imag., DOI [10.1109/TMI.2024.3351723.[24]A., DOI 10.1109/TMI.2024.3351723.[24]A]