Machine learning-based assessment of intratumor heterogeneity in glioblastoma

被引:0
|
作者
Hieber, D. [1 ,3 ]
Prokop, G. [2 ,4 ]
Karthan, M. [2 ,3 ]
Maerkl, B. [1 ]
Schlegel, J. [4 ]
Pryss, R. [3 ]
Grambow, G. [5 ]
Schobel, J. [2 ]
Liesche-Starnecker, F. [1 ]
机构
[1] Univ Augsburg, Fac Med, Pathol, Augsburg, Germany
[2] Neu Ulm Univ Appl Sci, Inst DigiHlth, Ulm, Germany
[3] Univ Wurzburg, Inst Clin Epidemiol & Biometry, Wurzburg, Germany
[4] Tech Univ Munich, Dept Neuropathol, Munich, Germany
[5] Aalen Univ Appl Sci, Aalen, Germany
关键词
D O I
暂无
中图分类号
R74 [神经病学与精神病学];
学科分类号
摘要
eP-NO-A78
引用
收藏
页数:1
相关论文
共 50 条
  • [1] Machine learning-based assessment of the impact of the manufacturing process on battery electrode heterogeneity
    Duquesnoy, Marc
    Boyano, Iker
    Ganborena, Larraitz
    Cereijo, Pablo
    Ayerbe, Elixabete
    Franco, Alejandro A.
    ENERGY AND AI, 2021, 5
  • [2] Machine learning-based prognostic subgrouping of glioblastoma: A multicenter study
    Akbari, Hamed
    Bakas, Spyridon
    Sako, Chiharu
    Kazerooni, Anahita Fathi
    Villanueva-Meyer, Javier
    Garcia, Jose A.
    Mamourian, Elizabeth
    Liu, Fang
    Cao, Quy
    Shinohara, Russell T.
    Baid, Ujjwal
    Getka, Alexander
    Pati, Sarthak
    Singh, Ashish
    Calabrese, Evan
    Chang, Susan
    Rudie, Jeffrey
    Sotiras, Aristeidis
    LaMontagne, Pamela
    Marcus, Daniel S.
    Milchenko, Mikhail
    Nazeri, Arash
    Balana, Carmen
    Capellades, Jaume
    Puig, Josep
    Badve, Chaitra
    Barnholtz-Sloan, Jill S.
    Sloan, Andrew E.
    Vadmal, Vachan
    Waite, Kristin
    Ak, Murat
    Colen, Rivka R.
    Park, Yae Won
    Ahn, Sung Soo
    Chang, Jong Hee
    Choi, Yoon Seong
    Lee, Seung-Koo
    Alexander, Gregory S.
    Ali, Ayesha S.
    Dicker, Adam P.
    Flanders, Adam E.
    Liem, Spencer
    Lombardo, Joseph
    Shi, Wenyin
    Shukla, Gaurav
    Griffith, Brent
    Poisson, Laila M.
    Rogers, Lisa R.
    Kotrotsou, Aikaterini
    Booth, Thomas C.
    NEURO-ONCOLOGY, 2025,
  • [3] Machine learning-based assessment of diabetes risk
    Sun, Qi
    Cheng, Xin
    Han, Kuo
    Sun, Yichao
    Ren, He
    Li, Ping
    APPLIED INTELLIGENCE, 2025, 55 (02)
  • [4] Machine learning based intratumor heterogeneity signature for predicting prognosis and immunotherapy benefit in stomach adenocarcinoma
    Chen, Hongcai
    Zheng, Zhiwei
    Yang, Cui
    Tan, Tingting
    Jiang, Yi
    Xue, Wenwu
    SCIENTIFIC REPORTS, 2024, 14 (01):
  • [5] Machine learning based intratumor heterogeneity related signature for prognosis and drug sensitivity in breast cancer
    Chen, Hongcai
    Chen, Minna
    Yang, Cui
    Tang, Tingting
    Wang, Wende
    Xue, Wenwu
    SCIENTIFIC REPORTS, 2025, 15 (01):
  • [6] Machine Learning-Based Radiomic Features for Glioblastoma Overall Survival Prediction
    Das, Ankit
    Cheng, Kee Yen
    Liu, Yong
    Goh, Rick Siow Mong
    Yang, Feng
    2024 IEEE CONFERENCE ON ARTIFICIAL INTELLIGENCE, CAI 2024, 2024, : 894 - 898
  • [7] Machine learning-based radiomic evaluation of treatment response prediction in glioblastoma
    Patel, M.
    Zhan, J.
    Natarajan, K.
    Flintham, R.
    Davies, N.
    Sanghera, P.
    Grist, J.
    Duddalwar, V
    Peet, A.
    Sawlani, V
    CLINICAL RADIOLOGY, 2021, 76 (08) : 628.e17 - 628.e27
  • [8] Machine Learning-Based Assessment of Watershed Morphometry in Makran
    Derakhshani, Reza
    Zaresefat, Mojtaba
    Nikpeyman, Vahid
    GhasemiNejad, Amin
    Shafieibafti, Shahram
    Rashidi, Ahmad
    Nemati, Majid
    Raoof, Amir
    LAND, 2023, 12 (04)
  • [9] MACHINE LEARNING-BASED SEVERITY ASSESSMENT OF PIPELINE DENTS
    Tang, Huang
    Sun, Jialin
    Di Blasi, Martin
    PROCEEDINGS OF 2022 14TH INTERNATIONAL PIPELINE CONFERENCE, IPC2022, VOL 1, 2022,
  • [10] A machine learning-based assessment of subjective quality of life
    Rodriguez, Sebastian
    Cabrera-Barona, Pablo
    JOURNAL OF COMPUTATIONAL SOCIAL SCIENCE, 2024, 7 (01): : 451 - 467