Hematite-based photoanodes for photoelectrochemical water splitting: Performance, understanding, and possibilities

被引:26
作者
Liu, Hang [1 ]
Fan, Xiaoli [2 ]
Li, Yan [3 ]
Guo, Hu [1 ]
Jiang, Wei [1 ]
Liu, Guigao [1 ]
机构
[1] Nanjing Univ Sci & Technol, Natl Special Superfine Powder Engn Res Ctr, Sch Chem & Chem Engn, Nanjing 210094, Jiangsu, Peoples R China
[2] Nanjing Inst Technol, Sch Mat Sci & Engn, Nanjing 211167, Jiangsu, Peoples R China
[3] Ningxia Univ, Sch Phys & Elect Elect Engn, Yinchuan 750021, Ningxia, Peoples R China
来源
JOURNAL OF ENVIRONMENTAL CHEMICAL ENGINEERING | 2023年 / 11卷 / 01期
基金
中国国家自然科学基金;
关键词
PEC water splitting; Hematite; Doping; Co -catalyst loading; Heterostructure construction; ENHANCED CHARGE SEPARATION; SOLAR FUEL GENERATION; NANOSTRUCTURED ALPHA-FE2O3; HETEROJUNCTION PHOTOANODE; SURFACE RECOMBINATION; OXIDE NANOPARTICLES; NANOROD PHOTOANODE; CATALYTIC-ACTIVITY; FE2O3; PHOTOANODES; IRON-OXIDE;
D O I
10.1016/j.jece.2022.109224
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Photoelectrochemical (PEC) water splitting is considered a prospective and attractive way to transforming solar energy to hydrogen (H2). Hematite (& alpha;-Fe2O3) is an n-type semiconductor material, having the strength of suitable bandgap, relatively wide light absorption range, high chemical stability, and abundant reserve, which makes it a promising alternative as photoanode material for PEC water splitting. Ever since the earliest research of & alpha;-Fe2O3 for PEC water splitting, numerous efforts have been dedicated to developing different strategies for synthesizing and modifying & alpha;-Fe2O3 to boost its performance, which has resulted in notable progress in recent years. In this paper, various synthesis methods and modification strategies of & alpha;-Fe2O3 in PEC applications are reviewed, principally concentrating on nanostructure design, element doping, co-catalyst modification, heterostructure construction and modification and so forth. In the end, a personal perspective on the challenges and opportu-nities of this promising material is put forward.
引用
收藏
页数:23
相关论文
共 147 条
[51]   Surviving High-Temperature Calcination: ZrO2-Induced Hematite Nanotubes for Photoelectrochemical Water Oxidation [J].
Li, Chengcheng ;
Li, Ang ;
Luo, Zhibin ;
Zhang, Jijie ;
Chang, Xiaoxia ;
Huang, Zhiqi ;
Wang, Tuo ;
Gong, Jinlong .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2017, 56 (15) :4150-4155
[52]   Construction of an efficient hole migration pathway on hematite for efficient photoelectrochemical water oxidation [J].
Li, Feng ;
Li, Jing ;
Gao, Lili ;
Hu, Yiping ;
Long, Xuefeng ;
Wei, Shenqi ;
Wang, Chenglong ;
Jin, Jun ;
Ma, Jiantai .
JOURNAL OF MATERIALS CHEMISTRY A, 2018, 6 (46) :23478-23485
[53]   A g-C3N4/WO3 photoanode with exceptional ability for photoelectrochemical water splitting [J].
Li, Haibo ;
Zhao, Fengyi ;
Zhang, Jincheng ;
Luo, Lei ;
Xiao, Xujing ;
Huang, Yongchao ;
Ji, Hongbing ;
Tong, Yexiang .
MATERIALS CHEMISTRY FRONTIERS, 2017, 1 (02) :338-342
[54]   Semiconductor-based photocatalysts and photoelectrochemical cells for solar fuel generation: a review [J].
Li, Jiangtian ;
Wu, Nianqiang .
CATALYSIS SCIENCE & TECHNOLOGY, 2015, 5 (03) :1360-1384
[55]   Hole extraction and injection pathways constructed by the in situ growth of ultra-thin Fe-doped NiOOH Co-catalysts on a fluorine-doped α-Fe2O3 photoanode [J].
Li, Jing ;
Li, Feng ;
Jin, Jun .
JOURNAL OF POWER SOURCES, 2021, 482
[56]   Convex-nanorods of α-Fe2O3/CQDs heterojunction photoanode synthesized by a facile hydrothermal method for highly efficient water oxidation [J].
Li, Longzhu ;
Liu, Changhai ;
Qiu, Yangyang ;
Mitsuzak, Naotoshi ;
Chen, Zhidong .
INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2017, 42 (31) :19654-19663
[57]   Morphology and Doping Engineering of Sn-Doped Hematite Nanowire Photoanodes [J].
Li, Mingyang ;
Yang, Yi ;
Ling, Yichuan ;
Qiu, Weitao ;
Wang, Fuxin ;
Liu, Tianyu ;
Song, Yu ;
Liu, Xiaoxia ;
Fang, Pingping ;
Tong, Yexiang ;
Li, Yat .
NANO LETTERS, 2017, 17 (04) :2490-2495
[58]   Comparison of heterogenized molecular and heterogeneous oxide catalysts for photoelectrochemical water oxidation [J].
Li, Wei ;
He, Da ;
Sheehan, Stafford W. ;
He, Yumin ;
Thorne, James E. ;
Yao, Xiahui ;
Brudvig, Gary W. ;
Wang, Dunwei .
ENERGY & ENVIRONMENTAL SCIENCE, 2016, 9 (05) :1794-1802
[59]   Surfactant-assisted controlled synthesis of a metal-organic framework on Fe2O3 nanorod for boosted photoelectrochemical water oxidation [J].
Li, Wenzhang ;
Wang, Keke ;
Yang, Xuetao ;
Zhan, Faqi ;
Wang, Yanqiu ;
Liu, Min ;
Qiu, Xiaoqing ;
Li, Jie ;
Zhan, Jing ;
Li, Qihou ;
Liu, Yang .
CHEMICAL ENGINEERING JOURNAL, 2020, 379
[60]   Interface engineering Z-scheme Ti-Fe2O3/In2O3 photoanode for highly efficient photoelectrochemical water splitting [J].
Li, Yinyin ;
Wu, Qiannan ;
Chen, Yifan ;
Zhang, Rui ;
Li, Cuiyan ;
Zhang, Kai ;
Li, Mingjie ;
Lin, Yanhong ;
Wang, Dejun ;
Zou, Xiaoxin ;
Xie, Tengfeng .
APPLIED CATALYSIS B-ENVIRONMENTAL, 2021, 290