In-depth understanding of the deterioration mechanism and modification engineering of high energy density Ni-rich layered lithium transition-metal oxide cathode for lithium-ion batteries

被引:39
作者
Hou, Lijuan [1 ]
Liu, Qi [1 ]
Chen, Xinyuan [1 ]
Yang, Qiang [1 ]
Mu, Daobin [1 ]
Li, Li [1 ]
Wu, Feng [1 ]
Chen, Renjie [1 ]
机构
[1] Beijing Inst Technol, Collaborat Innovat Ctr Elect Vehicles Beijing, Sch Mat Sci & Engn, Beijing Key Lab Environm Sci & Engn, Beijing 100081, Peoples R China
基金
中国国家自然科学基金; 中国博士后科学基金;
关键词
Lithium-ion batteries; Transition metal oxide cathode; Deterioration mechanism; Modification engineering; High energy density; ENHANCED ELECTROCHEMICAL PERFORMANCE; HIGH CUTOFF VOLTAGE; LINI0.8CO0.1MN0.1O2; CATHODE; REMAINING CHALLENGES; THERMAL-STABILITY; RECENT PROGRESS; SURFACE-AREA; NICKEL; AL; NCM;
D O I
10.1016/j.cej.2023.142946
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
LiNi1_x_yCoxMnyO2/LiNi1_ x_yCoxAlyO2 (NCM/NCA) materials, the high energy density (>300 Wh kg_1) tran-sition metal layered oxide cathode, especially Ni-rich and low-Co materials are promoting the development of electric vehicles, while the poorer electrochemical cycling performance and safety that need to be addressed before dominant in commercialization. Understanding and targeting the bulk phase and interface mechanisms of Ni-rich NCM/NCA materials is the most effective means of solving the failures due to the migration of transition metal ions, the irreversible evolution of the structure within the bulk phase, the cracking and side reactions of particles at the interface of the cathode material. An in-depth explanation of the internal lattice distortion, lithium-nickel mixing, microcracking and oxygen generation mechanisms of high energy density layered oxide cathodes and some targeted component and structure design, interface modification methods are summarized by demonstrating the reaction and evolution mechanisms of NCM/NCA materials, as well as the theoretical calculation and means of in-situ advanced characterization of these deterioration mechanisms. This helps to accelerate the large-scale application and domination of high energy density Ni-rich and low-Co NCM/NCA materials in electric vehicles.
引用
收藏
页数:19
相关论文
共 149 条
[1]   Towards High-Performance Li-rich NCM∥Graphite Cells by Germanium-Polymer Coating of the Positive Electrode Material [J].
Becker, Dina ;
Boerner, Markus ;
Friesen, Alex ;
Klein, Sven ;
Rodehorst, Uta ;
Diehl, Marcel ;
Winter, Martin ;
Placke, Tobias ;
Schmuch, Richard .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2020, 167 (06)
[2]   Reversible planar gliding and microcracking in a single-crystalline Ni-rich cathode [J].
Bi, Yujing ;
Tao, Jinhui ;
Wu, Yuqin ;
Li, Linze ;
Xu, Yaobin ;
Hu, Enyuan ;
Wu, Bingbin ;
Hu, Jiangtao ;
Wang, Chongmin ;
Zhan, Ji-Guang ;
Qi, Yue ;
Xiao, Jie .
SCIENCE, 2020, 370 (6522) :1313-+
[3]   Investigation of Fluorine and Nitrogen as Anionic Dopants in Nickel-Rich Cathode Materials for Lithium-Ion Batteries [J].
Binder, Jan O. ;
Culver, Sean P. ;
Pinedo, Ricardo ;
Weber, Dominik A. ;
Friedrich, Markus S. ;
Gries, Katharina I. ;
Volz, Kerstin ;
Zeier, Wolfgang G. ;
Janek, Juergen .
ACS APPLIED MATERIALS & INTERFACES, 2018, 10 (51) :44452-44462
[4]   Charge Transport in Single NCM Cathode Active Material Particles for Lithium-Ion Batteries Studied under Well-Defined Contact Conditions [J].
Burkhardt, Simon ;
Friedrich, Markus S. ;
Eckhardt, Janis K. ;
Wagner, Amalia C. ;
Bohn, Nicole ;
Binder, Joachim R. ;
Chen, Limei ;
Elm, Matthias T. ;
Janek, Juergen ;
Klar, Peter J. .
ACS ENERGY LETTERS, 2019, 4 (09) :2117-2123
[5]   Decreasing Li/Ni Disorder and Improving the Electrochemical Performances of Ni-Rich LiNi0.8Co0.1Mn0.1O2 by Ca Doping [J].
Chen, Minmin ;
Zhao, Enyue ;
Chen, Dongfeng ;
Wu, Meimei ;
Han, Songbai ;
Huang, Qingzhen ;
Yang, Limei ;
Xiao, Xiaoling ;
Hu, Zhongbo .
INORGANIC CHEMISTRY, 2017, 56 (14) :8355-8362
[6]   Effects of doping high-valence transition metal (V, Nb and Zr) ions on the structure and electrochemical performance of LIB cathode material LiNi0.8Co0.1Mn0.1O2 [J].
Chen, Yan-Hui ;
Zhang, Jing ;
Li, Yi ;
Zhang, Yong-Fan ;
Huang, Shu-Ping ;
Lin, Wei ;
Chen, Wen-Kai .
PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2021, 23 (19) :11528-11537
[7]   Insight into the intrinsic mechanism of improving electrochemical performance via constructing the preferred crystal orientation in lithium cobalt dioxide [J].
Chen, Yue ;
Niu, Yubiao ;
Lin, Chun ;
Li, Jiaxin ;
Lin, Yingbin ;
Xu, GuiGui ;
Palmer, Richard E. ;
Huang, Zhigao .
CHEMICAL ENGINEERING JOURNAL, 2020, 399
[8]   MnPO4-Coated Li(Ni0.4Co0.2Mn0.4)O2 for Lithium(-Ion) Batteries with Outstanding Cycling Stability and Enhanced Lithiation Kinetics [J].
Chen, Zhen ;
Kim, Guk-Tae ;
Bresser, Dominic ;
Diemant, Thomas ;
Asenbauer, Jakob ;
Jeong, Sangsik ;
Copley, Mark ;
Behm, Rolf Juergen ;
Lin, Jianyi ;
Shen, Zexiang ;
Passerini, Stefano .
ADVANCED ENERGY MATERIALS, 2018, 8 (27)
[9]   High rate performances of the cathode material LiNi1/3Co1/3Mn1/3O2 synthesized using low temperature hydroxide precipitation [J].
Cheng, Cuixia ;
Tan, Long ;
Liu, Haowen ;
Huang, Xintang .
MATERIALS RESEARCH BULLETIN, 2011, 46 (11) :2032-2035
[10]   Al-doping enables high stability of single-crystalline LiNi0.7Co0.1Mn0.2O2 lithium-ion cathodes at high voltage [J].
Cheng, Lei ;
Zhang, Bao ;
Su, Shi-Lin ;
Ming, Lei ;
Zhao, Yi ;
Tan, Xin-Xin .
RSC ADVANCES, 2021, 11 (01) :124-128