A complete metric space without non-trivial separable Lipschitz retracts

被引:3
作者
Hajek, Petr [1 ]
Quilis, Andres [1 ,2 ]
机构
[1] Czech Tech Univ, Fac Elect Engn, Dept Math, Technicka 2, Prague 6, Czech Republic
[2] Univ Politecn Valencia, Inst Univ Matemat Pura & Aplicada, Camino Vera S-N, Valencia 46022, Spain
关键词
Lipschitz retractions; FREE BANACH-SPACES; COMPLEMENTED SUBSPACES; UNIFORM;
D O I
10.1016/j.jfa.2023.109941
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We construct a complete metric space M of cardinality continuum such that every non-singleton closed separable subset of M fails to be a Lipschitz retract of M. This provides a metric analogue to the various classical and recent examples of Banach spaces failing to have linearly complemented subspaces of prescribed smaller density character. (c) 2023 Elsevier Inc. All rights reserved.
引用
收藏
页数:41
相关论文
共 24 条
  • [1] Compact reduction in Lipschitz-free spaces
    Aliaga, Ramon J.
    Nous, Camille
    Petitjean, Colin
    Prochazka, Antonin
    [J]. STUDIA MATHEMATICA, 2021, 260 (03) : 341 - 359
  • [2] Arens RF., 1956, Pacific J. Math, V6, P397, DOI [10.2140/pjm.1956.6.397, DOI 10.2140/PJM.1956.6.397]
  • [3] Connected economically metrizable spaces
    Banakh, Taras
    Vovk, Myroslava
    Wojcik, Michal Ryszard
    [J]. FUNDAMENTA MATHEMATICAE, 2011, 212 (02) : 145 - 173
  • [4] Benyamini Y., 2000, AM MATH SOC, V48
  • [5] ON THE GEOMETRY OF BANACH SPACES OF THE FORM Lip0(C(K))
    Candido, Leandro
    Kaufmann, Pedro L.
    [J]. PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2021, 149 (08) : 3335 - 3345
  • [6] ON THE STRUCTURE OF LIPSCHITZ-FREE SPACES
    Cuth, Marek
    Doucha, Michal
    Wojtaszczyk, Przemyslaw
    [J]. PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2016, 144 (09) : 3833 - 3846
  • [7] Free Spaces Over Some Proper Metric Spaces
    Dalet, A.
    [J]. MEDITERRANEAN JOURNAL OF MATHEMATICS, 2015, 12 (03) : 973 - 986
  • [8] Characterization of metric spaces whose free space is isometric to l1*
    Dalet, Aude
    Kaufmann, Pedro L.
    Prochazka, Antonin
    [J]. BULLETIN OF THE BELGIAN MATHEMATICAL SOCIETY-SIMON STEVIN, 2016, 23 (03) : 391 - 400
  • [9] The Lipschitz free Banach spaces of C(K)-spaces
    Dutrieux, Y
    Ferenczi, V
    [J]. PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2006, 134 (04) : 1039 - 1044
  • [10] Lipschitz-free Banach spaces
    Godefroy, G
    Kalton, NJ
    [J]. STUDIA MATHEMATICA, 2003, 159 (01) : 121 - 141