Vlasov-Maxwell equations with spin effects

被引:3
作者
Crouseilles, Nicolas [1 ,2 ,3 ]
Hervieux, Paul-Antoine [4 ]
Hong, Xue [1 ,2 ,3 ]
Manfredi, Giovanni [4 ]
机构
[1] Univ Rennes, F-35042 Rennes, France
[2] Inria Ctr Univ Rennes, F-35042 Rennes, France
[3] IRMAR, UMR 6625, F-35042 Rennes, France
[4] Univ Strasbourg, Inst Phys & Chim Mat Strasbourg, CNRS, UMR 7504, F-67000 Strasbourg, France
关键词
plasma simulation; quantum plasma; plasma dynamics; SIMULATION; DYNAMICS; CODE;
D O I
10.1017/S0022377823000314
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
We present a numerical method to solve the Vlasov-Maxwell equations for spin-1/2 particles, in a semiclassical approximation where the orbital motion is treated classically while the spin variable is fully quantum. Unlike the spinless case, the phase-space distribution function is a $2\times 2$ matrix, which can also be represented, in the Pauli basis, as one scalar function $f_0$ and one three-component vector function $\boldsymbol f$. The relationship between this 'vectorial' representation and the fully scalar representation on an extended phase space first proposed by Brodin et al. (Phys. Rev. Lett., vol. 101, 2008, p. 245002) is analysed in detail. By means of suitable approximations and symmetries, the vectorial spin-Vlasov-Maxwell model can be reduced to two-dimensions in the phase space, which is amenable to numerical solutions using a high-order grid-based Eulerian method. The vectorial model enjoys a Poisson structure that paves the way to accurate Hamiltonian split-time integrators. As an example, we study the stimulated Raman scattering of an electromagnetic wave interacting with an underdense plasma, and compare the results with those obtained earlier with the scalar spin-Vlasov-Maxwell model and a particle-in-cell code.
引用
收藏
页数:38
相关论文
共 50 条
[41]   Equations of motion of test particles for solving the spin-dependent Boltzmann-Vlasov equation [J].
Xia, Yin ;
Xu, Jun ;
Li, Bao-An ;
Shen, Wen-Qing .
PHYSICS LETTERS B, 2016, 759 :596-600
[42]   Higher-order accurate and conservative hybrid numerical scheme for multi-variables ime-fractional Vlasov-Maxwell system: An Atangana-Baleanu Caputo approach [J].
Zubair, Tamour ;
Lu, Tiao ;
Usman, Muhammad ;
Nisar, Kottakkaran Sooppy ;
Ismail, Khadiga Ahmed .
ALEXANDRIA ENGINEERING JOURNAL, 2022, 61 (07) :5269-5281
[43]   SYMMETRIZATION OF VLASOV-POISSON EQUATIONS [J].
Despres, Bruno .
SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2014, 46 (04) :2554-2580
[44]   MODIFIED LAWSON METHODS FOR VLASOV EQUATIONS [J].
Boutin, Benjamin ;
Crestetto, Anais ;
Crouseilles, Nicolas ;
Massot, Josselin .
SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2024, 46 (03) :A1574-A1598
[45]   Exponential DG methods for Vlasov equations [J].
Crouseilles, Nicolas ;
Hong, Xue .
JOURNAL OF COMPUTATIONAL PHYSICS, 2024, 498
[46]   The Hartree and Vlasov equations at positive density [J].
Lewin, Mathieu ;
Sabin, Julien .
COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 2020, 45 (12) :1702-1754
[47]   A Charge Preserving Scheme for the Numerical Resolution of the Vlasov-Ampere Equations [J].
Crouseilles, Nicolas ;
Respaud, Thomas .
COMMUNICATIONS IN COMPUTATIONAL PHYSICS, 2011, 10 (04) :1001-1026
[48]   SOLVING VLASOV EQUATIONS USING NRxx METHOD [J].
Cai, Zhenning ;
Li, Ruo ;
Wang, Yanli .
SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2013, 35 (06) :A2807-A2831
[49]   A positive preserving gas-kinetic scheme for relativistic Vlasov-Bhatnagar-Gross-Krook-Maxwell model [J].
Wang, Yi ;
Ni, Guoxi ;
Zhang, Jiexing .
INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN FLUIDS, 2022, 94 (07) :756-774
[50]   An anisotropic nonlinear stabilization for finite element approximation of Vlasov-Poisson equations [J].
Wen, Junjie ;
Nazarov, Murtazo .
JOURNAL OF COMPUTATIONAL PHYSICS, 2025, 536