Vlasov-Maxwell equations with spin effects

被引:3
作者
Crouseilles, Nicolas [1 ,2 ,3 ]
Hervieux, Paul-Antoine [4 ]
Hong, Xue [1 ,2 ,3 ]
Manfredi, Giovanni [4 ]
机构
[1] Univ Rennes, F-35042 Rennes, France
[2] Inria Ctr Univ Rennes, F-35042 Rennes, France
[3] IRMAR, UMR 6625, F-35042 Rennes, France
[4] Univ Strasbourg, Inst Phys & Chim Mat Strasbourg, CNRS, UMR 7504, F-67000 Strasbourg, France
关键词
plasma simulation; quantum plasma; plasma dynamics; SIMULATION; DYNAMICS; CODE;
D O I
10.1017/S0022377823000314
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
We present a numerical method to solve the Vlasov-Maxwell equations for spin-1/2 particles, in a semiclassical approximation where the orbital motion is treated classically while the spin variable is fully quantum. Unlike the spinless case, the phase-space distribution function is a $2\times 2$ matrix, which can also be represented, in the Pauli basis, as one scalar function $f_0$ and one three-component vector function $\boldsymbol f$. The relationship between this 'vectorial' representation and the fully scalar representation on an extended phase space first proposed by Brodin et al. (Phys. Rev. Lett., vol. 101, 2008, p. 245002) is analysed in detail. By means of suitable approximations and symmetries, the vectorial spin-Vlasov-Maxwell model can be reduced to two-dimensions in the phase space, which is amenable to numerical solutions using a high-order grid-based Eulerian method. The vectorial model enjoys a Poisson structure that paves the way to accurate Hamiltonian split-time integrators. As an example, we study the stimulated Raman scattering of an electromagnetic wave interacting with an underdense plasma, and compare the results with those obtained earlier with the scalar spin-Vlasov-Maxwell model and a particle-in-cell code.
引用
收藏
页数:38
相关论文
共 50 条
[21]   Vlasov-Maxwell simulations of backward Raman amplification of seed pulses in plasmas [J].
Shoucri, Magdi ;
Afeyan, Bedros .
LASER AND PARTICLE BEAMS, 2016, 34 (04) :576-600
[23]   VALIS: A split-conservative scheme for the relativistic 2D Vlasov-Maxwell system [J].
Sircombe, N. J. ;
Arber, T. D. .
JOURNAL OF COMPUTATIONAL PHYSICS, 2009, 228 (13) :4773-4788
[24]   The Hamiltonian structure and Euler-Poincare formulation of the Vlasov-Maxwell and gyrokinetic systems [J].
Squire, J. ;
Qin, H. ;
Tang, W. M. ;
Chandre, C. .
PHYSICS OF PLASMAS, 2013, 20 (02)
[25]   Relativistic Vlasov-Maxwell modelling using finite volumes and adaptive mesh refinement [J].
Wettervik, Benjamin Svedung ;
DuBois, Timothy C. ;
Siminos, Evangelos ;
Fulop, Tunde .
EUROPEAN PHYSICAL JOURNAL D, 2017, 71 (06)
[26]   MAGNETIC CONFINEMENT FOR THE 2D AXISYMMETRIC RELATIVISTIC VLASOV-MAXWELL SYSTEM IN AN ANNULUS [J].
Jang, Jin Woo ;
Strain, Robert M. ;
Wong, Tak Kwong .
KINETIC AND RELATED MODELS, 2022, 15 (04) :569-604
[27]   A detailed investigation of the properties of a Vlasov-Maxwell equilibrium for the force-free Harris sheet [J].
Neukirch, T. ;
Wilson, F. ;
Harrison, M. G. .
PHYSICS OF PLASMAS, 2009, 16 (12)
[28]   Structure-preserving geometric particle-in-cell methods for Vlasov-Maxwell systems [J].
Xiao, Jianyuan ;
Qin, Hong ;
Liu, Jian .
PLASMA SCIENCE & TECHNOLOGY, 2018, 20 (11)
[29]   ERROR ESTIMATES OF RUNGE-KUTTA DISCONTINUOUS GALERKIN METHODS FOR THE VLASOV-MAXWELL SYSTEM [J].
Yang, He ;
Li, Fengyan .
ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE, 2015, 49 (01) :69-99
[30]   A family of one-dimensional Vlasov-Maxwell equilibria for the force-free Harris sheet [J].
Wilson, F. ;
Neukirch, T. .
PHYSICS OF PLASMAS, 2011, 18 (08)