Vlasov-Maxwell equations with spin effects

被引:1
|
作者
Crouseilles, Nicolas [1 ,2 ,3 ]
Hervieux, Paul-Antoine [4 ]
Hong, Xue [1 ,2 ,3 ]
Manfredi, Giovanni [4 ]
机构
[1] Univ Rennes, F-35042 Rennes, France
[2] Inria Ctr Univ Rennes, F-35042 Rennes, France
[3] IRMAR, UMR 6625, F-35042 Rennes, France
[4] Univ Strasbourg, Inst Phys & Chim Mat Strasbourg, CNRS, UMR 7504, F-67000 Strasbourg, France
关键词
plasma simulation; quantum plasma; plasma dynamics; SIMULATION; DYNAMICS; CODE;
D O I
10.1017/S0022377823000314
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
We present a numerical method to solve the Vlasov-Maxwell equations for spin-1/2 particles, in a semiclassical approximation where the orbital motion is treated classically while the spin variable is fully quantum. Unlike the spinless case, the phase-space distribution function is a $2\times 2$ matrix, which can also be represented, in the Pauli basis, as one scalar function $f_0$ and one three-component vector function $\boldsymbol f$. The relationship between this 'vectorial' representation and the fully scalar representation on an extended phase space first proposed by Brodin et al. (Phys. Rev. Lett., vol. 101, 2008, p. 245002) is analysed in detail. By means of suitable approximations and symmetries, the vectorial spin-Vlasov-Maxwell model can be reduced to two-dimensions in the phase space, which is amenable to numerical solutions using a high-order grid-based Eulerian method. The vectorial model enjoys a Poisson structure that paves the way to accurate Hamiltonian split-time integrators. As an example, we study the stimulated Raman scattering of an electromagnetic wave interacting with an underdense plasma, and compare the results with those obtained earlier with the scalar spin-Vlasov-Maxwell model and a particle-in-cell code.
引用
收藏
页数:38
相关论文
共 50 条
  • [1] Geometric particle-in-cell methods for the Vlasov-Maxwell equations with spin effects
    Crouseilles, Nicolas
    Hervieux, Paul-Antoine
    Li, Yingzhe
    Manfredi, Giovanni
    Sun, Yajuan
    JOURNAL OF PLASMA PHYSICS, 2021, 87 (03)
  • [2] Quantized tensor networks for solving the Vlasov-Maxwell equations
    Ye, Erika
    Loureiro, Nuno F.
    JOURNAL OF PLASMA PHYSICS, 2024, 90 (03)
  • [3] DISCONTINUOUS GALERKIN METHODS FOR THE VLASOV-MAXWELL EQUATIONS
    Cheng, Yingda
    Gamba, Irene M.
    Li, Fengyan
    Morrison, Philip J.
    SIAM JOURNAL ON NUMERICAL ANALYSIS, 2014, 52 (02) : 1017 - 1049
  • [4] Stochastic variational principles for the collisional Vlasov-Maxwell and Vlasov-Poisson equations
    Tyranowski, Tomasz M.
    PROCEEDINGS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2021, 477 (2252):
  • [5] Multi-Scale Paraxial Models to Approximate Vlasov-Maxwell Equations
    Assous, Franck
    Furman, Yevgeni
    COMPUTATIONAL METHODS IN APPLIED MATHEMATICS, 2022, 22 (02) : 277 - 295
  • [6] Hamiltonian reduction of Vlasov-Maxwell to a dark slow manifold
    Miloshevich, George
    Burby, Joshua W.
    JOURNAL OF PLASMA PHYSICS, 2021, 87 (03)
  • [7] A hierarchy of reduced models to approximate Vlasov-Maxwell equations for slow time variations
    Assous, Franck
    Furman, Yevgeni
    COMPTES RENDUS MECANIQUE, 2020, 348 (12): : 969 - 981
  • [8] Chaotic magnetic fields in Vlasov-Maxwell equilibria
    Ghosh, Abhijit
    Janaki, M. S.
    Dasgupta, Brahmananda
    Bandyopadhyay, Alak
    CHAOS, 2014, 24 (01)
  • [9] Discontinuous Galerkin Methods for Relativistic Vlasov-Maxwell System
    Yang, He
    Li, Fengyan
    JOURNAL OF SCIENTIFIC COMPUTING, 2017, 73 (2-3) : 1216 - 1248
  • [10] Quadratic conservative scheme for relativistic Vlasov-Maxwell system
    Shiroto, Takashi
    Ohnishi, Naofumi
    Sentoku, Yasuhiko
    JOURNAL OF COMPUTATIONAL PHYSICS, 2019, 379 : 32 - 50