Imaginary-time evolution with quantum nondemolition measurements: Multiqubit interactions via measurement nonlinearities

被引:6
作者
Kondappan, Manikandan [1 ,2 ]
Chaudhary, Manish [1 ,2 ]
Ilo-Okeke, Ebubechukwu O. [2 ]
Ivannikov, Valentin [2 ,3 ]
Byrnes, Tim [1 ,2 ,3 ,4 ,5 ,6 ]
机构
[1] East China Normal Univ, Sch Phys & Mat Sci, State Key Lab Precis Spect, Shanghai 200062, Peoples R China
[2] New York Univ Shanghai, 1555 Century Ave, Shanghai 200122, Peoples R China
[3] NYU Shanghai, NYU ECNU Inst Phys, 3663 Zhongshan Rd North, Shanghai 200062, Peoples R China
[4] New York Univ Abu Dhabi, NYUAD Res Inst, Ctr Quantum & Topol Syst CQTS, Abu Dhabi, U Arab Emirates
[5] Natl Inst Informat, 2-1-2 Hitotsubashi,Chiyoda Ku, Tokyo 1018430, Japan
[6] NYU, Dept Phys, New York, NY 10003 USA
基金
中国国家自然科学基金;
关键词
ATOMIC ENSEMBLES; ENTANGLEMENT; COMPUTATION; SIMULATION; ARRAYS; STATES;
D O I
10.1103/PhysRevA.107.042616
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
We show that quantum nondemolition (QND) measurements can be used to realize measurement-based imaginary-time evolution. In our proposed scheme, repeated weak QND measurements are used to estimate the energy of a given Hamiltonian. Based on this estimated energy, adaptive unitary operations are applied such that only the targeted energy eigenstates are fixed points of the evolution. In this way, the system is deterministically driven towards the desired state. The nonlinear nature of the QND measurement, which allows for producing interactions between systems, is explicitly derived in terms of measurement operators. We show that for suitable interaction times, single-qubit QND Hamiltonians can be converted to effective multiqubit imaginary time operations. We illustrate our techniques with the example of preparing a four-qubit cluster state, which is prepared using only collective single-qubit QND measurements and single-qubit adaptive operations.
引用
收藏
页数:11
相关论文
共 63 条
[1]   Why quantum chemistry is hard [J].
Aaronson, Scott .
NATURE PHYSICS, 2009, 5 (10) :707-708
[2]   Coherent all-optical control of ultracold atoms arrays in permanent magnetic traps [J].
Abdelrahman, Ahmed ;
Mukai, Tetsuya ;
Haeffner, Hartmut ;
Byrnes, Tim .
OPTICS EXPRESS, 2014, 22 (03) :3501-3513
[3]   Adiabatic quantum computation [J].
Albash, Tameem ;
Lidar, Daniel A. .
REVIEWS OF MODERN PHYSICS, 2018, 90 (01)
[4]   Quantum nondemolition measurement based generation of entangled states in two Bose-Einstein condensates [J].
Aristizabal-Zuluaga, Juan E. ;
Skobleva, Iuliia ;
Richter, Lars ;
Ju, Yangxu ;
Mao, Yuping ;
Kondappan, Manikandan ;
Ivannikov, Valentin ;
Byrnes, Tim .
JOURNAL OF PHYSICS B-ATOMIC MOLECULAR AND OPTICAL PHYSICS, 2021, 54 (10)
[5]  
Aspuru-Guzik A, 2012, NAT PHYS, V8, P285, DOI [10.1038/NPHYS2253, 10.1038/nphys2253]
[6]   Simulating lattice gauge theories within quantum technologies [J].
Banuls, Mari Carmen ;
Blatt, Rainer ;
Catani, Jacopo ;
Celi, Alessio ;
Cirac, Juan Ignacio ;
Dalmonte, Marcello ;
Fallani, Leonardo ;
Jansen, Karl ;
Lewenstein, Maciej ;
Montangero, Simone ;
Muschik, Christine A. ;
Reznik, Benni ;
Rico, Enrique ;
Tagliacozzo, Luca ;
Van Acoleyen, Karel ;
Verstraete, Frank ;
Wiese, Uwe-Jens ;
Wingate, Matthew ;
Zakrzewski, Jakub ;
Zoller, Peter .
EUROPEAN PHYSICAL JOURNAL D, 2020, 74 (08)
[7]   Spin squeezing of 1011 atoms by prediction and retrodiction measurements [J].
Bao, Han ;
Duan, Junlei ;
Jin, Shenchao ;
Lu, Xingda ;
Li, Pengxiong ;
Qu, Weizhi ;
Wang, Mingfeng ;
Novikova, Irina ;
Mikhailov, Eugeniy E. ;
Zhao, Kai-Feng ;
Molmer, Klaus ;
Shen, Heng ;
Xiao, Yanhong .
NATURE, 2020, 581 (7807) :159-+
[8]   Simple nearest-neighbor two-body Hamiltonian system for which the ground state is a universal resource for quantum computation [J].
Bartlett, Stephen D. ;
Rudolph, Terry .
PHYSICAL REVIEW A, 2006, 74 (04)
[9]   Persistent entanglement in arrays of interacting particles [J].
Briegel, HJ ;
Raussendorf, R .
PHYSICAL REVIEW LETTERS, 2001, 86 (05) :910-913
[10]   Quantum Simulators [J].
Buluta, Iulia ;
Nori, Franco .
SCIENCE, 2009, 326 (5949) :108-111