The role of lncRNAs/miRNAs/Sirt1 axis in myocardial and cerebral injury

被引:26
作者
Barangi, Samira [1 ]
Hayes, A. Wallace [2 ,3 ]
Karimi, Gholamreza [1 ,4 ,5 ]
机构
[1] Mashhad Univ Med Sci, Pharmaceut Technol Inst, Pharmaceut Res Ctr, Mashhad, Iran
[2] Michigan State Univ, E Lansing, MI USA
[3] Univ S Florida, Tampa, FL USA
[4] Mashhad Univ Med Sci, Sch Pharm, Dept Pharmacodynam & Toxicol, Mashhad, Iran
[5] Mashhad Univ Med Sci, Sch Pharm, Dept Pharmacodynam & Toxicol, Pharmacol & Toxicol, POB 1365-91775, Mashhad, Iran
关键词
Non-coding RNA; microRNA; MALAT1; ANRIL; ischemia; atherosclerosis; LONG NONCODING RNAS; ISCHEMIC-STROKE; SIRT1; DISEASE; REPERFUSION; MECHANISMS; TRANSCRIPTION; EXPRESSION; PROTECTS; SIRTUINS;
D O I
10.1080/15384101.2023.2172265
中图分类号
Q2 [细胞生物学];
学科分类号
071009 ; 090102 ;
摘要
In recent years, researchers have begun to realize the importance of the role of non-coding RNAs in the treatment of cancer and cardiovascular and neurological diseases. LncRNAs and miRNAs are important non-coding RNAs, which regulate gene expression and activate mRNA translation through binding to diverse target sites. Their involvement in the regulation of protein function and the modulation of physiological and pathological conditions continues to be investigated. Sirtuins, especially Sirt1, have a critical function in regulating a variety of physiological processes such as oxidative stress, inflammation, apoptosis, and autophagy. The lncRNAs/miRNAs/Sirt1 axis may be a novel regulatory mechanism, which is involved in the progression and/or prevention of numerous diseases. This review focuses on recent findings on the crosstalk between non-coding RNAs and Sirt1 in myocardial and cerebral injuries and may provide some insight into the development of novel approaches in the treatment of these disorders.
引用
收藏
页码:1062 / 1073
页数:12
相关论文
共 101 条
[31]   LncRNA SNHG15 Promotes Oxidative Stress Damage to Regulate the Occurrence and Development of Cerebral Ischemia/Reperfusion Injury by Targeting the miR-141/SIRT1 Axis [J].
Kang, Mingming ;
Ji, Fangchao ;
Sun, Xingyuan ;
Liu, Hongbin ;
Zhang, Chenxin .
JOURNAL OF HEALTHCARE ENGINEERING, 2021, 2021
[32]   The Role of LncRNAs in Translation [J].
Karakas, Didem ;
Ozpolat, Bulent .
NON-CODING RNA, 2021, 7 (01) :1-14
[33]   Control of translation elongation in health and disease [J].
Knight, John R. P. ;
Garland, Gavin ;
Poyry, Tuija ;
Mead, Emma ;
Vlahov, Nikola ;
Sfakianos, Aristeidis ;
Grosso, Stefano ;
De-Lima-Hedayioglu, Fabio ;
Mallucci, Giovanna R. ;
von der Haar, Tobias ;
Smales, C. Mark ;
Sansom, Owen J. ;
Willis, Anne E. .
DISEASE MODELS & MECHANISMS, 2020, 13 (03)
[34]   Platelets and coagulation factors: Established and novel roles in atherosclerosis and atherothrombosis [J].
Koenen, Rory R. ;
Binder, Christoph J. .
ATHEROSCLEROSIS, 2020, 307 :78-79
[35]   LncRNA HCG11 Inhibits Adipocyte Differentiation in Human Adipose-Derived Mesenchymal Stem Cells by Sponging miR-204-5p to Upregulate SIRT1 [J].
Li, Dandan ;
Liu, Yang ;
Gao, Wei ;
Han, Jiakai ;
Yuan, Rongrong ;
Zhang, Mengdi ;
Ge, Zhenying .
CELL TRANSPLANTATION, 2020, 29
[36]   Coding or Noncoding, the Converging Concepts of RNAs [J].
Li, Jing ;
Liu, Changning .
FRONTIERS IN GENETICS, 2019, 10
[37]   Long non-coding RNA H19 contributes to hypoxia-induced CPC injury by suppressing Sirt1 through miR-200a-3p [J].
Li, Linlin ;
Wang, Qiuyun ;
Yuan, Zhize ;
Chen, Anqing ;
Liu, Zuyun ;
Li, Haiqing ;
Wang, Zhe .
ACTA BIOCHIMICA ET BIOPHYSICA SINICA, 2018, 50 (10) :950-959
[38]  
Li Z., 2019, Gene Expr. Profiling Cancer, DOI [10.5772/intechopen.81773, DOI 10.5772/INTECHOPEN.81773]
[39]  
Lian LP, 2020, J BIOL REG HOMEOS AG, V34, P379, DOI 10.23812/19-549-A-65
[40]   HAND2-AS1 targeting miR-1208/SIRT1 axis alleviates foam cell formation in atherosclerosis [J].
Ma, Lingyun ;
He, Shigui ;
Li, Helan ;
Zhang, Shengli ;
Yin, Yi .
INTERNATIONAL JOURNAL OF CARDIOLOGY, 2022, 346 :53-61