Distance-Edge-Monitoring Sets in Hierarchical and Corona Graphs

被引:0
作者
Yang, Gang [1 ]
He, Changxiang [1 ]
机构
[1] Univ Shanghai Sci & Technol, Shanghai 200093, Peoples R China
关键词
Distance; distance-edge-monitoring set; hierarchical graph; corona graph; DISCOVERY; SPECTRUM;
D O I
10.1142/S0219265922500037
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
Let V (G) and E(G) be the vertex set and edge set of graph G. Let d(G)(x,y) be the distance between vertices x and y in the graph G and G - e be the graph obtained by deleting edge e from G. For a vertex set M subset of V (G) and an edge e is an element of E(G), let P(M,e) be the set of pairs (x,y) with a vertex x & ISIN; M and a vertex y & ISIN; V (G) such that d(G)(x,y)&NOTEQUexpressionL;d(G)-e(x,y). A vertex set M subset of V (G) and an edge e is an element of E(G), let P(M,e) be the set of p V (G) is distance-edge-monitoring set, introduced by Foucaud, Kao, Klasing, Miller, and Ryan, if every edge e & ISIN; E(G) is monitored by some vertex of M, that is, the set P(M,e) is nonempty. In this paper, we determine the smallest size of distance-edge-monitoring sets of hierarchical and corona graphs.
引用
收藏
页数:9
相关论文
共 14 条
[1]   Network verification via routing table queries [J].
Bampas, Evangelos ;
Bilo, Davide ;
Drovandi, Guido ;
Guala, Luciano ;
Klasing, Ralf ;
Proietti, Guido .
JOURNAL OF COMPUTER AND SYSTEM SCIENCES, 2015, 81 (01) :234-248
[2]   The spectrum of the corona of two graphs [J].
Barik, S. ;
Pati, S. ;
Sarma, B. K. .
SIAM JOURNAL ON DISCRETE MATHEMATICS, 2007, 21 (01) :47-56
[3]   The hierarchical product of graphs [J].
Barriere, L. ;
Comellas, F. ;
Dalfo, C. ;
Fiol, M. A. .
DISCRETE APPLIED MATHEMATICS, 2009, 157 (01) :36-48
[4]   Network discovery and verification [J].
Beerliova, Zuzana ;
Eberhard, Felix ;
Erlebach, Thomas ;
Hall, Alexander ;
Hoffmann, Michael ;
Mihal'ak, Matus ;
Ram, L. Shankar .
IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, 2006, 24 (12) :2168-2181
[5]   Discovery of network properties with all-shortest-paths queries [J].
Bilo, Davide ;
Erlebach, Thomas ;
Mihalak, Matus ;
Widmayer, Peter .
THEORETICAL COMPUTER SCIENCE, 2010, 411 (14-15) :1626-1637
[6]   Exploring networks with traceroute-like probes:: Theory and simulations [J].
Dall'Asta, L ;
Alvarez-Hamelin, I ;
Barrata, A ;
Vázquez, A ;
Vespignani, A .
THEORETICAL COMPUTER SCIENCE, 2006, 355 (01) :6-24
[7]   Monitoring the edges of a graph using distances [J].
Foucaud, Florent ;
Kao, Shih-Shun ;
Klasing, Ralf ;
Miller, Mirka ;
Ryan, Joe .
DISCRETE APPLIED MATHEMATICS, 2022, 319 :424-438
[8]  
Govindan R., 2000, Proceedings IEEE INFOCOM 2000. Conference on Computer Communications. Nineteenth Annual Joint Conference of the IEEE Computer and Communications Societies (Cat. No.00CH37064), P1371, DOI 10.1109/INFCOM.2000.832534
[9]   Geometric fractal growth model for scale-free networks [J].
Jung, S. ;
Kim, S. ;
Kahng, B. .
2002, American Physical Society (65)
[10]   THE LAPLACIAN SPECTRUM OF CORONA OF TWO GRAPHS [J].
Liu, Qun .
KRAGUJEVAC JOURNAL OF MATHEMATICS, 2014, 38 (01) :163-170