In vivo grading of lipids in fatty liver by near-infrared autofluorescence and reflectance

被引:1
作者
Lifante, Jose [1 ,2 ]
de la Fuente-Fernandez, Maria [1 ]
Roman-Carmena, Marta [2 ]
Fernandez, Nuria [1 ]
Jaque Garcia, Daniel [1 ,2 ]
Granado, Miriam [1 ]
Ximendes, Erving [1 ,2 ]
机构
[1] Univ Autonoma Madrid, Nanomat Bioimaging Grp NanoBIG, Madrid, Spain
[2] IRYCIS, Madrid, Spain
关键词
autofluorescence; nonalcoholic fatty liver; reflectance; singular value decomposition; spectra; FLUORESCENCE; SPECTROSCOPY; CANCER; ULTRAVIOLET; DIAGNOSIS; COMPONENT; SYSTEM;
D O I
10.1002/jbio.202200208
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
The prevalence of nonalcoholic fatty liver (NAFLD) is rapidly increasing worldwide. When untreated, it may lead to complications such as liver cirrhosis or hepatocarcinoma. The diagnosis of NAFLD is usually obtained by ultrasonography, a technique that can underestimate its prevalence. For this reason, physicians aspire for an accurate, cost-effective, and noninvasive method to determine both the presence and the specific stage of the NAFLD. In this paper, we report an integrated approach for the quantitative estimation of the density of triglycerides in the liver based on the use of autofluorescence and reflectance signals generated by the abdomen of obese C57BL6/J mice. Singular value decomposition is applied to the generated spectra and its corresponding regression model provided a determination coefficient of 0.99 and a root mean square error of 240 mg/dl. This, in turn, enabled the quantitative imaging of triglycerides density in the livers of mice under in vivo conditions.
引用
收藏
页数:10
相关论文
共 50 条
[1]   Hyperspectral image analysis. A tutorial [J].
Amigo, Jose Manuel ;
Babamoradi, Hamid ;
Elcoroaristizabal, Saioa .
ANALYTICA CHIMICA ACTA, 2015, 896 :34-51
[2]   In vivo fluorescence imaging for tissue diagnostics [J].
AnderssonEngels, S ;
afKlinteberg, C ;
Svanberg, K ;
Svanberg, S .
PHYSICS IN MEDICINE AND BIOLOGY, 1997, 42 (05) :815-824
[3]  
Antunes C, 2021, STATPEARLS
[4]   Ultraviolet and visible spectroscopies for tissue diagnostics: Fluorescence spectroscopy and elastic-scattering spectroscopy [J].
Bigio, IJ ;
Mourant, JR .
PHYSICS IN MEDICINE AND BIOLOGY, 1997, 42 (05) :803-814
[5]  
Bottiroli G., 2007, COMPREHENSIVE SERIES, P189, DOI [10.1039/9781847551207-00189, DOI 10.1039/9781847551207-00189]
[6]  
Chalasani NP, 2017, HEPATOLOGY, V66, p303A
[7]   Autofluorescence spectrofluorometry of central nervous system (CNS) neuromediators [J].
Crespi, F ;
Croce, AC ;
Fiorani, S ;
Masala, B ;
Heidbreder, C ;
Bottiroli, G .
LASERS IN SURGERY AND MEDICINE, 2004, 34 (01) :39-47
[8]   Autofluorescence spectroscopy and imaging: a tool for biomedical research and diagnosis [J].
Croce, A. C. ;
Bottiroli, G. .
EUROPEAN JOURNAL OF HISTOCHEMISTRY, 2014, 58 (04) :320-337
[9]   Autofluorescence discrimination of metabolic fingerprint in nutritional and genetic fatty liver models [J].
Croce, Anna C. ;
Ferrigno, Andrea ;
Di Pasqua, Laura G. ;
Berardo, Clarissa ;
Piccolini, Valeria Maria ;
Bertone, Vittorio ;
Bottiroli, Giovanni ;
Vairetti, Mariapia .
JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY, 2016, 164 :13-20
[10]   Bilirubin: an autofluorescence bile biomarker for liver functionality monitoring [J].
Croce, Anna C. ;
Ferrigno, Andrea ;
Santin, Giada ;
Vairetti, Mariapia ;
Bottiroli, Giovanni .
JOURNAL OF BIOPHOTONICS, 2014, 7 (10) :810-817