In Situ NMR Verification for Stacking Pressure-Induced Lithium Deposition and Dead Lithium in Anode-Free Lithium Metal Batteries

被引:30
作者
Lin, Xing [1 ]
Shen, Yue [1 ]
Yu, Yao [1 ]
Huang, Yunhui [1 ]
机构
[1] Huazhong Univ Sci & Technol, Sch Mat Sci & Engn, State Key Lab Mat Proc & Die & Mould Technol, Wuhan 430074, Peoples R China
基金
国家重点研发计划; 中国国家自然科学基金;
关键词
anode-free; dead lithium; in situ NMR; lithium dendrite; lithium metal batteries; LI; GROWTH;
D O I
10.1002/aenm.202303918
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Anode-free lithium metal batteries have emerged as strong contenders for next-generation rechargeable batteries due to their ultra-high energy density. However, their safety and life span are insufficient because of the easy generation of dendrites and dead lithium during lithium plating and stripping. Understanding the formation mechanism for lithium dendrites and dead lithium is essential to further improve battery performance. By employing in situ solid-state nuclear magnetic resonance (NMR) spectroscopy, the influence of stacking pressure on dendritic behavior and dead lithium is systematically investigated. At 0.1 MPa, lithium dendrite is rapidly formed, followed by a linear increase of dead lithium. High stacking pressure not only causes lithium metal to fracture but also leads to form dendrites and dead lithium at the fracture site. At 0.5 MPa stacking pressure, the least quantity of dead lithium is attained, and the growth pattern of dead lithium is exponential growth. The exponential growth pattern is distinguished by the high growth of dead lithium early in the battery cycle and essentially no growth later in the cycle. As a result, it is believed that efficient suppression of dead lithium generation early in battery cycling can play a critical role in improving battery performance. The influence of stacking pressure on dendritic behavior and dead lithium is systematically investigated by employing in situ solid-state nuclear magnetic resonance (NMR) spectroscopy. At low pressure, lithium dendrite is rapidly formed, followed by a linear increase of dead lithium. High stacking pressure not only causes lithium metal to fracture but also leads to form mossy lithium and dead lithium. image
引用
收藏
页数:9
相关论文
共 46 条
[1]   On the role of water contamination in rechargeable Li batteries [J].
Aurbach, D ;
Weissman, I ;
Zaban, A ;
Dan, P .
ELECTROCHIMICA ACTA, 1999, 45 (07) :1135-1140
[2]   Impact of External Pressure and Electrolyte Transport Properties on Lithium Dendrite Growth [J].
Barai, Pallab ;
Higa, Kenneth ;
Srinivasan, Venkat .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2018, 165 (11) :A2654-A2666
[3]   Saddle coils for uniform static magnetic field generation in NMR experiments [J].
Bonetto, F ;
Anoardo, E ;
Polello, M .
CONCEPTS IN MAGNETIC RESONANCE PART B-MAGNETIC RESONANCE ENGINEERING, 2006, 29B (01) :9-19
[4]   Investigating Li Microstructure Formation on Li Anodes for Lithium Batteries by in Situ 6Li/7Li NMR and SEM [J].
Chang, Hee Jung ;
Trease, Nicole M. ;
Ilott, Andrew J. ;
Zeng, Dongli ;
Du, Lin-Shu ;
Jerschow, Alexej ;
Grey, Clare P. .
JOURNAL OF PHYSICAL CHEMISTRY C, 2015, 119 (29) :16443-16451
[5]   Chemo-Mechanical Effects of Stack Pressure and Temperature on Anode-Free Lithium Metal Batteries [J].
Chang, Wesley ;
Xu, Tongwei ;
Steingart, Daniel .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2022, 169 (09)
[6]   Dead lithium: mass transport effects on voltage, capacity, and failure of lithium metal anodes [J].
Chen, Kuan-Hung ;
Wood, Kevin N. ;
Kazyak, Eric ;
LePage, William S. ;
Davis, Andrew L. ;
Sanchez, Adrian J. ;
Dasgupta, Neil P. .
JOURNAL OF MATERIALS CHEMISTRY A, 2017, 5 (23) :11671-11681
[7]   Quantification of reversible and irreversible lithium in practical lithium-metal batteries [J].
Deng, Wei ;
Yin, Xue ;
Bao, Wurigumula ;
Zhou, Xufeng ;
Hu, Zhiyuan ;
He, Bangyi ;
Qiu, Bao ;
Meng, Ying Shirley ;
Liu, Zhaoping .
NATURE ENERGY, 2022, 7 (11) :1031-1041
[8]   Stack Pressure Considerations for Room-Temperature All-Solid-State Lithium Metal Batteries [J].
Doux, Jean-Marie ;
Han Nguyen ;
Tan, Darren H. S. ;
Banerjee, Abhik ;
Wang, Xuefeng ;
Wu, Erik A. ;
Jo, Chiho ;
Yang, Hedi ;
Meng, Ying Shirley .
ADVANCED ENERGY MATERIALS, 2020, 10 (01)
[9]   Lithium ion battery degradation: what you need to know [J].
Edge, Jacqueline S. ;
O'Kane, Simon ;
Prosser, Ryan ;
Kirkaldy, Niall D. ;
Patel, Anisha N. ;
Hales, Alastair ;
Ghosh, Abir ;
Ai, Weilong ;
Chen, Jingyi ;
Yang, Jiang ;
Li, Shen ;
Pang, Mei-Chin ;
Bravo Diaz, Laura ;
Tomaszewska, Anna ;
Marzook, M. Waseem ;
Radhakrishnan, Karthik N. ;
Wang, Huizhi ;
Patel, Yatish ;
Wu, Billy ;
Offer, Gregory J. .
PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2021, 23 (14) :8200-8221
[10]   Pressure-tailored lithium deposition and dissolution in lithium metal batteries [J].
Fang, Chengcheng ;
Lu, Bingyu ;
Pawar, Gorakh ;
Zhang, Minghao ;
Cheng, Diyi ;
Chen, Shuru ;
Ceja, Miguel ;
Doux, Jean-Marie ;
Musrock, Henry ;
Cai, Mei ;
Liaw, Boryann ;
Meng, Ying Shirley .
NATURE ENERGY, 2021, 6 (10) :987-994