AGB estimation using Sentinel-2 and Sentinel-1 datasets

被引:1
|
作者
Qasim, Mohammad [1 ]
Csaplovics, Elmar [1 ]
机构
[1] Tech Univ Dresden, Fac Environm Sci, Chair Remote Sensing, Helmholtz Str 10, D-01069 Dresden, Germany
关键词
Forests; AGB; Remote Sensing; Machine Learning; ABOVEGROUND BIOMASS ESTIMATION; SUPPORT VECTOR MACHINES; LEAF-AREA INDEX; LAND-COVER CLASSIFICATION; SYNTHETIC-APERTURE RADAR; GROWING STOCK VOLUME; FOREST BIOMASS; TROPICAL FOREST; CARBON STOCKS; IMAGE CLASSIFICATION;
D O I
10.1007/s10661-024-12478-5
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Climate change is one of the greatest threats recently, of which developing countries are facing most of the brunt. In the fight against climate change, forests can play an important role, since they hold a substantial amount of terrestrial carbon and can therefore affect the global carbon cycle. Deforestation, however, is a significant challenge. There are financial incentives that can help in halting deforestation by compensating developing countries for their efforts. They require however assessments which makes it essential for developing countries to regularly monitor their stocking. Based on the aforementioned, forest carbon stock assessment was conducted in Margalla Hills National Park i.e., Sub-tropical Chir Pine Forest (SCPF) and Sub-tropical Broadleaved Evergreen Forest (SBEF), in Pakistan combining field inventory with a remote-sensing-based approach using machine learning algorithms. Circular plots of a 20 m radius were used for recording the data and Sentinel-2 (S2) and Sentinel-1 (S1) satellite data were used for estimating the Aboveground Biomass (AGB). The performances of Random Forests (RF) and Support Vector Machine (SVM) were explored. The AGB was higher for the SCPF. The RF performed better for SCPF, but SVM was better for SBEF. The free available satellite data in the form of S2 and S1 data offers an advantage for AGB estimations. The combination of S2 and S1 for future AGB studies in Pakistan is also recommended.
引用
收藏
页数:33
相关论文
共 50 条
  • [1] AGB estimation using Sentinel-2 and Sentinel-1 datasets
    Mohammad Qasim
    Elmar Csaplovics
    Environmental Monitoring and Assessment, 2024, 196
  • [2] FOREST ABOVEGROUND BIOMASS ESTIMATION USING A COMBINATION OF SENTINEL-1 AND SENTINEL-2 DATA
    Hoscilo, Agata
    Lewandowska, Aneta
    Ziolkowski, Dariusz
    Sterenczak, Krzysztof
    Lisanczuk, Marek
    Schmullius, Christiane
    Pathe, Carsten
    IGARSS 2018 - 2018 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, 2018, : 9026 - 9029
  • [3] Mapping Floods in Lowland Forest Using Sentinel-1 and Sentinel-2 Data and an Object-Based Approach
    Gasparovic, Mateo
    Klobucar, Damir
    FORESTS, 2021, 12 (05):
  • [4] Seasonal monitoring of biochemical variables in natural rangelands using Sentinel-1 and Sentinel-2 data
    Rapiya, Monde
    Ramoelo, Abel
    Truter, Wayne
    INTERNATIONAL JOURNAL OF REMOTE SENSING, 2024, 45 (14) : 4737 - 4763
  • [5] Discrimination of species composition types of a grazed pasture landscape using Sentinel-1 and Sentinel-2 data
    Crabbe, Richard A.
    Lamb, David
    Edwards, Clare
    INTERNATIONAL JOURNAL OF APPLIED EARTH OBSERVATION AND GEOINFORMATION, 2020, 84
  • [6] Woody Above-Ground Biomass Estimation on Abandoned Agriculture Land Using Sentinel-1 and Sentinel-2 Data
    Bucha, Tomas
    Papco, Juraj
    Sackov, Ivan
    Pajtik, Jozef
    Sedliak, Maros
    Barka, Ivan
    Feranec, Jan
    REMOTE SENSING, 2021, 13 (13)
  • [7] Assessment of Sentinel-2 Vegetation Indices for Plot Level Tree AGB Estimation
    Alam, Mehboob
    Zafar, Shahzad
    Muhammad, Waqas
    2017 FIFTH INTERNATIONAL CONFERENCE ON AEROSPACE SCIENCE & ENGINEERING (ICASE), 2017,
  • [8] Delineating Smallholder Maize Farms from Sentinel-1 Coupled with Sentinel-2 Data Using Machine Learning
    Mashaba-Munghemezulu, Zinhle
    Chirima, George Johannes
    Munghemezulu, Cilence
    SUSTAINABILITY, 2021, 13 (09)
  • [9] OmbriaNet-Supervised Flood Mapping via Convolutional Neural Networks Using Multitemporal Sentinel-1 and Sentinel-2 Data Fusion
    Drakonakis, Georgios, I
    Tsagkatakis, Grigorios
    Fotiadou, Konstantina
    Tsakalides, Panagiotis
    IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2022, 15 : 2341 - 2356
  • [10] Monitoring Damage Caused by Pantana phyllostachysae Chao to Moso Bamboo Forests Using Sentinel-1 and Sentinel-2 Images
    Huang, Xuying
    Zhang, Qi
    Hu, Lu
    Zhu, Tingting
    Zhou, Xin
    Zhang, Yiwei
    Xu, Zhanghua
    Ju, Weimin
    REMOTE SENSING, 2022, 14 (19)