Multi-Objective Optimization Technique Based on QUBO and an Ising Machine

被引:2
作者
Ikeda, Hiroshi [1 ]
Yamazaki, Takashi [1 ]
机构
[1] Optimizat Technol Project, Fujitsu Ltd, Kawasaki, Kanagawa 2118588, Japan
关键词
Optimization; Linear programming; Annealing; Quantum annealing; Optimization methods; Object recognition; Multi-objective optimization; algorithm; combinatorial optimization; BOUNDARY INTERSECTION; ALGORITHM;
D O I
10.1109/ACCESS.2024.3353222
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
With an increase in the complexity of society, solving multi-objective optimization problems (MOPs) has become crucial. In this study, we introduced a novel method called "quadratic unconstrained binary optimization based on the weighted normal" for solving MOPs using Ising machines, such as quantum annealing and digital annealer (DA), in the field of combinatorial optimization. The proposed method applies the penalty-based boundary intersection method to Ising machines under a setting limited to linear objective functions and maximizes the speed and performance of the DA, which is a quadratic unconstrained binary optimization-specific solver. We demonstrated the effectiveness of the proposed method by solving a real-world problem with a nonconvex shaped Pareto front (component combination problem). The results suggested that the proposed method could handle both convex- and nonconvex-shaped Pareto fronts, expanding the potential applications of Ising machines to solving complex MOPs. This development could significantly enhance decision-making processes, particularly in achieving sustainable development goals.
引用
收藏
页码:8957 / 8969
页数:13
相关论文
共 26 条
[1]   Applying Ising Machines to Multi-objective QUBOs [J].
Ayodele, Mayowa ;
Allmendinger, Richard ;
Lopez-Ibanez, Manuel ;
Liefooghe, Arnaud ;
Parizy, Matthieu .
PROCEEDINGS OF THE 2023 GENETIC AND EVOLUTIONARY COMPUTATION CONFERENCE COMPANION, GECCO 2023 COMPANION, 2023, :2166-2174
[2]  
Ayodele Mayowa, 2022, arXiv, DOI 10.48550/arXiv.2210.11321
[3]   Normal-boundary intersection: A new method for generating the Pareto surface in nonlinear multicriteria optimization problems [J].
Das, I ;
Dennis, JE .
SIAM JOURNAL ON OPTIMIZATION, 1998, 8 (03) :631-657
[4]   Improving the anytime behavior of two-phase local search [J].
Dubois-Lacoste, Jeremie ;
Lopez-Ibanez, Manuel ;
Stutzle, Thomas .
ANNALS OF MATHEMATICS AND ARTIFICIAL INTELLIGENCE, 2011, 61 (02) :125-154
[5]   A quantum adiabatic evolution algorithm applied to random instances of an NP-complete problem [J].
Farhi, E ;
Goldstone, J ;
Gutmann, S ;
Lapan, J ;
Lundgren, A ;
Preda, D .
SCIENCE, 2001, 292 (5516) :472-476
[6]  
Glover F, 2019, Arxiv, DOI arXiv:1811.11538
[7]   How to Solve Combinatorial Optimization Problems Using Real Quantum Machines: A Recent Survey [J].
Heng, Sovanmonynuth ;
Kim, Dongmin ;
Kim, Taekyung ;
Han, Youngsun .
IEEE ACCESS, 2022, 10 :120106-120121
[8]  
Ishibuchi Hisao, 2013, Learning and Intelligent Optimization. 7th International Conference, LION 7. Revised Selected Papers: LNCS 7997, P231, DOI 10.1007/978-3-642-44973-4_24
[9]  
Ji HT, 2020, 2020 IEEE 5TH INTERNATIONAL CONFERENCE ON INTELLIGENT TRANSPORTATION ENGINEERING (IEEE ICITE 2020), P18, DOI [10.1109/ICITE50838.2020.9231520, 10.1109/icite50838.2020.9231520]
[10]   Quantum annealing with manufactured spins [J].
Johnson, M. W. ;
Amin, M. H. S. ;
Gildert, S. ;
Lanting, T. ;
Hamze, F. ;
Dickson, N. ;
Harris, R. ;
Berkley, A. J. ;
Johansson, J. ;
Bunyk, P. ;
Chapple, E. M. ;
Enderud, C. ;
Hilton, J. P. ;
Karimi, K. ;
Ladizinsky, E. ;
Ladizinsky, N. ;
Oh, T. ;
Perminov, I. ;
Rich, C. ;
Thom, M. C. ;
Tolkacheva, E. ;
Truncik, C. J. S. ;
Uchaikin, S. ;
Wang, J. ;
Wilson, B. ;
Rose, G. .
NATURE, 2011, 473 (7346) :194-198