AdaptNet: Policy Adaptation for Physics-Based Character Control

被引:9
作者
Xu, Pei [1 ,2 ]
Xie, Kaixiang [3 ]
Andrews, Sheldon [2 ,4 ]
Kry, Paul G. [3 ]
Neff, Michael [5 ]
McGuire, Morgan [2 ,6 ]
Karamouzas, Ioannis [7 ]
Zordan, Victor [1 ,2 ]
机构
[1] Clemson Univ, Clemson, SC 29631 USA
[2] Roblox, San Mateo, CA 94403 USA
[3] McGill Univ, Montreal, PQ, Canada
[4] Ecole Technol Super, Montreal, PQ, Canada
[5] Univ Calif Davis, Davis, CA 95616 USA
[6] Univ Waterloo, Waterloo, ON, Canada
[7] Univ Calif Riverside, Riverside, CA 92521 USA
来源
ACM TRANSACTIONS ON GRAPHICS | 2023年 / 42卷 / 06期
基金
加拿大自然科学与工程研究理事会; 美国国家科学基金会;
关键词
character animation; physics-based control; motion synthesis; reinforcement learning; motion style transfer; domain adaptation; GAN;
D O I
10.1145/3618375
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
Motivated by humans' ability to adapt skills in the learning of new ones, this paper presents AdaptNet, an approach for modifying the latent space of existing policies to allow new behaviors to be quickly learned from like tasks in comparison to learning from scratch. Building on top of a given reinforcement learning controller, AdaptNet uses a two-tier hierarchy that augments the original state embedding to support modest changes in a behavior and further modifies the policy network layers to make more substantive changes. The technique is shown to be effective for adapting existing physics-based controllers to a wide range of new styles for locomotion, new task targets, changes in character morphology and extensive changes in environment. Furthermore, it exhibits significant increase in learning efficiency, as indicated by greatly reduced training times when compared to training from scratch or using other approaches that modify existing policies. Code is available at https://motion-lab.github.io/AdaptNet.
引用
收藏
页数:17
相关论文
共 79 条
[1]  
Rusu AA, 2016, Arxiv, DOI arXiv:1511.06295
[2]  
Rusu AA, 2016, Arxiv, DOI [arXiv:1606.04671, DOI 10.43550/ARXIV:1606.04671, DOI 10.48550/ARXIV.1606.04671]
[3]   Image2StyleGAN: How to Embed Images Into the StyleGAN Latent Space? [J].
Abdal, Rameen ;
Qin, Yipeng ;
Wonka, Peter .
2019 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV 2019), 2019, :4431-4440
[4]   Unpaired Motion Style Transfer from Video to Animation [J].
Aberman, Kfir ;
Weng, Yijia ;
Lischinski, Dani ;
Cohen-Or, Daniel ;
Chen, Baoquan .
ACM TRANSACTIONS ON GRAPHICS, 2020, 39 (04)
[5]  
Aghajanyan A., 2021, P 59 ANN M ASS COMPU, V1, P7319
[6]  
Alet F., 2018, P MACHINE LEARNING R, V87
[7]  
Andrychowicz M, 2016, ADV NEUR IN, V29
[8]   DReCon: Data-Driven Responsive Control of Physics-Based Characters [J].
Bergamin, Kevin ;
Clavet, Simon ;
Holden, Daniel ;
Forbes, James Richard .
ACM TRANSACTIONS ON GRAPHICS, 2019, 38 (06)
[9]  
Berthelot D, 2017, Arxiv, DOI arXiv:1703.10717
[10]   ASE: Large-Scale Reusable Adversarial Skill Embeddings for Physically Simulated Characters [J].
Bin Peng, Xue ;
Guo, Yunrong ;
Halper, Lina ;
Levine, Sergey ;
Fidler, Sanja .
ACM TRANSACTIONS ON GRAPHICS, 2022, 41 (04)