A novel 3D non-degenerate hyperchaotic map with ultra-wide parameter range and coexisting attractors periodic switching

被引:10
作者
Huang, Lilian [1 ,2 ,3 ]
Li, Chuang [1 ,2 ]
Liu, Jin [1 ,2 ]
Zhong, Yu [4 ]
Zhang, Hao [4 ]
机构
[1] Harbin Engn Univ, Coll Informat & Commun Engn, Harbin 150001, Peoples R China
[2] MIIT Key Lab Adv Marine Commun & Informat Technol, Harbin 150001, Peoples R China
[3] Harbin Engn Univ, Natl Key Lab Underwater Acoust Technol, Harbin 150001, Peoples R China
[4] Southwest China Inst Elect Technol, Chengdu 610036, Peoples R China
关键词
Discrete map; Non-degenerate hyperchaotic; Infinitely wide parameter range; Attractors periodic switching; DSP implementation; DIGITAL CHAOTIC MAPS; ANTIMONOTONICITY; SYSTEMS; ALGORITHM; SET;
D O I
10.1007/s11071-023-09104-3
中图分类号
TH [机械、仪表工业];
学科分类号
0802 ;
摘要
Based on trigonometric functions, we propose a three-dimensional (3D) hyperchaotic map with a concise symmetric structure. From the perspective of Lyapunov exponents, we establish the mathematical proof that the new map consistently maintains a chaotic state across an infinitely wide parameter range. Numerical simulations illuminate a diverse array of dynamic behaviors, including an ultra-wide range of non-degenerate hyperchaotic parameters, antimonotonicity, transient chaos, and multiple coexisting attractors. Particularly noteworthy, altering initial values enables the periodic switch of symmetric attractors-a rare phenomenon within other chaotic maps. Moreover, in conjunction with an offset constant, successful polarity transformation of attractors in a single direction has been achieved. Furthermore, performance analysis underscores that the sequence generated by the new map embodies significantly elevated complexity and pseudo-randomness. Finally, we implement the new map using a digital signal processing platform and successfully validate its physical feasibility by obtaining the chaotic attractors.
引用
收藏
页码:2289 / 2304
页数:16
相关论文
共 43 条
  • [1] Enhanced digital chaotic maps based on bit reversal with applications in random bit generators
    Alawida, Moatsum
    Samsudin, Azman
    Sen Teh, Je
    [J]. INFORMATION SCIENCES, 2020, 512 : 1155 - 1169
  • [2] Permutation entropy: A natural complexity measure for time series
    Bandt, C
    Pompe, B
    [J]. PHYSICAL REVIEW LETTERS, 2002, 88 (17) : 4
  • [3] Memristor-Based Hyperchaotic Maps and Application in Auxiliary Classifier Generative Adversarial Nets
    Bao, Han
    Hua, Zhongyun
    Li, Houzhen
    Chen, Mo
    Bao, Bocheng
    [J]. IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, 2022, 18 (08) : 5297 - 5306
  • [4] Initials-Boosted Coexisting Chaos in a 2-D Sine Map and Its Hardware Implementation
    Bao, Han
    Hua, Zhongyun
    Wang, Ning
    Zhu, Lei
    Chen, Mo
    Bao, Bocheng
    [J]. IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, 2021, 17 (02) : 1132 - 1140
  • [5] Memristor initial-boosted coexisting plane bifurcations and its extreme multi-stability reconstitution in two-memristor-based dynamical system
    Bao, Han
    Chen, Mo
    Wu, HuaGan
    Bao, BoCheng
    [J]. SCIENCE CHINA-TECHNOLOGICAL SCIENCES, 2020, 63 (04) : 603 - 613
  • [6] Chaos-Based Security Solution for Fingerprint Data During Communication and Transmission
    Bhatnagar, Gaurav
    Wu, Q. M. Jonathan
    [J]. IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, 2012, 61 (04) : 876 - 887
  • [7] Multistability Analysis of a Piecewise Map via Bifurcations
    Cassal-Quiroga, B. B.
    Gilardi-Velazquez, H. E.
    Campos-Canton, E.
    [J]. INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2022, 32 (16):
  • [8] A novel control method to counteract the dynamical degradation of a digital chaotic sequence
    Chen, Chen
    Sun, Kehui
    Peng, Yuexi
    Alamodi, Abdulaziz O. A.
    [J]. EUROPEAN PHYSICAL JOURNAL PLUS, 2019, 134 (01)
  • [9] Hidden extreme multistability and synchronicity of memristor-coupled non-autonomous memristive Fitzhugh-Nagumo models
    Chen, Mo
    Luo, Xuefeng
    Suo, Yunhe
    Xu, Quan
    Wu, Huagan
    [J]. NONLINEAR DYNAMICS, 2023, 111 (08) : 7773 - 7788
  • [10] ANTIMONOTONICITY - INEVITABLE REVERSALS OF PERIOD-DOUBLING CASCADES
    DAWSON, SP
    GREBOGI, C
    YORKE, JA
    KAN, I
    KOCAK, H
    [J]. PHYSICS LETTERS A, 1992, 162 (03) : 249 - 254