Binomial Approximation to Locally Dependent Collateralized Debt Obligations

被引:1
作者
Kumar, Amit N. [1 ]
Vellaisamy, P. [2 ]
机构
[1] Indian Inst Technol BHU, Dept Math Sci, Varanasi 221005, Uttar Pradesh, India
[2] Indian Inst Technol, Dept Math, Mumbai 400076, India
关键词
Binomial distribution; Error bounds; Stein's method; CDO; STEINS METHOD; POISSON APPROXIMATION; SUMS;
D O I
10.1007/s11009-023-10057-8
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
In this paper, we develop Stein's method for binomial approximation using the stop-loss metric that allows one to obtain a bound on the error term between the expectation of call functions. We obtain the results for a locally dependent collateralized debt obligation (CDO), under certain conditions on moments. The results are also exemplified for an independent CDO. Finally, it is shown that our bounds are sharper than the existing bounds.
引用
收藏
页数:18
相关论文
共 24 条
[1]  
Barbour A. D., 1999, ESAIM-PROBAB STAT, V3, P131, DOI 10.1051/ps:1999106
[2]  
Barbour AD, 2002, ANN PROBAB, V30, P509
[3]  
Barbour AD, 1992, Poisson Approximation
[4]   On the distance between convex-ordered random variables, with applications [J].
Boutsikas, MV ;
Vaggelatou, E .
ADVANCES IN APPLIED PROBABILITY, 2002, 34 (02) :349-374
[5]  
Brown TC, 2001, ANN PROBAB, V29, P1373
[6]   Negative Binomial Approximation with Stein's Method [J].
Timothy C. Brown ;
M. J. Phillips .
Methodology And Computing In Applied Probability, 1999, 1 (4) :407-421
[7]  
Cekanavicius V, 2021, J THEOR PROBAB, V34, P2241, DOI 10.1007/s10959-020-01042-9
[8]  
Cekanavicius V, 2015, ALEA-LAT AM J PROBAB, V12, P765
[9]   POISSON APPROXIMATION FOR DEPENDENT TRIALS [J].
CHEN, LHY .
ANNALS OF PROBABILITY, 1975, 3 (03) :534-545
[10]   Stein's method for discrete Gibbs measures [J].
Eichelsbacher, Peter ;
Reinert, Gesine .
ANNALS OF APPLIED PROBABILITY, 2008, 18 (04) :1588-1618