Scattering for radial bounded solutions of focusing supercritical wave equations in odd dimensions

被引:0
作者
Camliyurt, Guher [1 ,2 ]
Kenig, Carlos E. [1 ]
机构
[1] Univ Chicago, Dept Math, Chicago, IL 60637 USA
[2] Virginia Polytech Inst & State Univ, Blacksburg, VA 24061 USA
基金
美国国家科学基金会;
关键词
Scattering for radial solutions; Wave equations; Odd dimensions; GLOBAL WELL-POSEDNESS; NONLINEAR SCHRODINGER-EQUATION; ENERGY-CRITICAL WAVE; CRITICAL SOBOLEV NORM; BLOW-UP; STRICHARTZ INEQUALITIES; REGULARITY; STABILITY; PROFILES; EXTERIOR;
D O I
10.1016/j.na.2023.113352
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider the wave equation with an energy-supercritical focusing nonlinearity in general odd dimensions. We prove that any radial solution that remains bounded in the critical Sobolev space is global and scatters to a linear solution.(c) 2023 Elsevier Ltd. All rights reserved.
引用
收藏
页数:76
相关论文
共 62 条
[1]  
[Anonymous], 2004, Differential Equations, Dynamical Systems, An Introduction to Chaos
[2]   High frequency approximation of solutions to critical nonlinear wave equations [J].
Bahouri, H ;
Gérard, P .
AMERICAN JOURNAL OF MATHEMATICS, 1999, 121 (01) :131-175
[3]   Decay estimates for the critical semilinear wave equation [J].
Bahouri, H .
ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 1998, 15 (06) :783-789
[4]   Global Well-posedness for the Logarithmically Energy-Supercritical Nonlinear Wave Equation with Partial Symmetry [J].
Bulut, Aynur ;
Dodson, Benjamin .
INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2021, 2021 (08) :5943-5967
[5]   THE DEFOCUSING ENERGY-SUPERCRITICAL CUBIC NONLINEAR WAVE EQUATION IN DIMENSION FIVE [J].
Bulut, Aynur .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2015, 367 (09) :6017-6061
[6]   The radial defocusing energy-supercritical cubic nonlinear wave equation in R1+5 [J].
Bulut, Aynur .
NONLINEARITY, 2014, 27 (08) :1859-1877
[7]   Stability and Unconditional Uniqueness of Solutions for Energy Critical Wave Equations in High Dimensions [J].
Bulut, Aynur ;
Czubak, Magdalena ;
Li, Dong ;
Pavlovic, Natasa ;
Zhang, Xiaoyi .
COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 2013, 38 (04) :575-607
[8]   Global well-posedness and scattering for the defocusing energy-supercritical cubic nonlinear wave equation [J].
Bulut, Aynur .
JOURNAL OF FUNCTIONAL ANALYSIS, 2012, 263 (06) :1609-1660
[9]  
Bulut A, 2010, DIFFER INTEGRAL EQU, V23, P1035
[10]   Global well-posedness and scattering for the energy-critical nonlinear Schrodinger equation in R3 [J].
Colliander, J. ;
Keel, M. ;
Staffilani, G. ;
Takaoka, H. ;
Tao, T. .
ANNALS OF MATHEMATICS, 2008, 167 (03) :767-865