Broad functional profiling of fission yeast proteins using phenomics and machine learning

被引:12
作者
Rodriguez-Lopez, Maria [1 ,2 ]
Bordin, Nicola [3 ]
Lees, Jon [3 ,4 ]
Scholes, Harry [3 ]
Hassan, Shaimaa [1 ,2 ,5 ]
Saintain, Quentin [1 ,2 ]
Kamrad, Stephan [1 ,2 ]
Orengo, Christine [3 ]
Baehler, Juerg [1 ,2 ]
机构
[1] UCL, Inst Hlth Ageing, London, England
[2] UCL, Dept Genet Evolut & Environm, London, England
[3] UCL, Inst Struct & Mol Biol, London, England
[4] Univ Bristol, Bristol, England
[5] Helwan Univ, Fac Pharm, Cairo, Egypt
基金
英国生物技术与生命科学研究理事会;
关键词
cell phenotype; functional genomics; unknown protein; computational prediction; gene ontology; machine learning; S; pombe; CHRONOLOGICAL LIFE-SPAN; OXIDATIVE STRESS; GENE-EXPRESSION; SCHIZOSACCHAROMYCES-POMBE; TRANSCRIPTION FACTOR; NETWORK; INHIBITION; PHENOTYPE; DISCOVERY; RESPONSES;
D O I
10.7554/eLife.88229
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
Many proteins remain poorly characterized even in well-studied organisms, presenting a bottleneck for research. We applied phenomics and machine-learning approaches with Schizosaccharomyces pombe for broad cues on protein functions. We assayed colony-growth phenotypes to measure the fitness of deletion mutants for 3509 non-essential genes in 131 conditions with different nutrients, drugs, and stresses. These analyses exposed phenotypes for 3492 mutants, including 124 mutants of 'priority unstudied' proteins conserved in humans, providing varied functional clues. For example, over 900 proteins were newly implicated in the resistance to oxidative stress. Phenotype-correlation networks suggested roles for poorly characterized proteins through 'guilt by association' with known proteins. For complementary functional insights, we predicted Gene Ontology (GO) terms using machine learning methods exploiting protein-network and protein-homology data (NET-FF). We obtained 56,594 high-scoring GO predictions, of which 22,060 also featured high information content. Our phenotype-correlation data and NET-FF predictions showed a strong concordance with existing PomBase GO annotations and protein networks, with integrated analyses revealing 1675 novel GO predictions for 783 genes, including 47 predictions for 23 priority unstudied proteins. Experimental validation identified new proteins involved in cellular aging, showing that these predictions and phenomics data provide a rich resource to uncover new protein functions.
引用
收藏
页数:25
相关论文
共 101 条
[1]   KinFams: De-Novo Classification of Protein Kinases Using CATH Functional Units [J].
Adeyelu, Tolulope ;
Bordin, Nicola ;
Waman, Vaishali P. ;
Sadlej, Marta ;
Sillitoe, Ian ;
Moya-Garcia, Aurelio A. ;
Orengo, Christine A. .
BIOMOLECULES, 2023, 13 (02)
[2]   OMA standalone: orthology inference among public and custom genomes and transcriptomes [J].
Altenhoff, Adrian M. ;
Levy, Jeremy ;
Zarowiecki, Magdalena ;
Tomiczek, Bartlomiej ;
Vesztrocy, Alex Warwick ;
Dalquen, Daniel A. ;
Mueller, Steven ;
Telford, Maximilian J. ;
Glover, Natasha M. ;
Dylus, David ;
Dessimoz, Christophe .
GENOME RESEARCH, 2019, 29 (07) :1152-1163
[3]   Deep learning for computational biology [J].
Angermueller, Christof ;
Parnamaa, Tanel ;
Parts, Leopold ;
Stegle, Oliver .
MOLECULAR SYSTEMS BIOLOGY, 2016, 12 (07)
[4]   Gene Ontology: tool for the unification of biology [J].
Ashburner, M ;
Ball, CA ;
Blake, JA ;
Botstein, D ;
Butler, H ;
Cherry, JM ;
Davis, AP ;
Dolinski, K ;
Dwight, SS ;
Eppig, JT ;
Harris, MA ;
Hill, DP ;
Issel-Tarver, L ;
Kasarskis, A ;
Lewis, S ;
Matese, JC ;
Richardson, JE ;
Ringwald, M ;
Rubin, GM ;
Sherlock, G .
NATURE GENETICS, 2000, 25 (01) :25-29
[5]   UniProt: a worldwide hub of protein knowledge [J].
Bateman, Alex ;
Martin, Maria-Jesus ;
Orchard, Sandra ;
Magrane, Michele ;
Alpi, Emanuele ;
Bely, Benoit ;
Bingley, Mark ;
Britto, Ramona ;
Bursteinas, Borisas ;
Busiello, Gianluca ;
Bye-A-Jee, Hema ;
Da Silva, Alan ;
De Giorgi, Maurizio ;
Dogan, Tunca ;
Castro, Leyla Garcia ;
Garmiri, Penelope ;
Georghiou, George ;
Gonzales, Daniel ;
Gonzales, Leonardo ;
Hatton-Ellis, Emma ;
Ignatchenko, Alexandr ;
Ishtiaq, Rizwan ;
Jokinen, Petteri ;
Joshi, Vishal ;
Jyothi, Dushyanth ;
Lopez, Rodrigo ;
Luo, Jie ;
Lussi, Yvonne ;
MacDougall, Alistair ;
Madeira, Fabio ;
Mahmoudy, Mahdi ;
Menchi, Manuela ;
Nightingale, Andrew ;
Onwubiko, Joseph ;
Palka, Barbara ;
Pichler, Klemens ;
Pundir, Sangya ;
Qi, Guoying ;
Raj, Shriya ;
Renaux, Alexandre ;
Lopez, Milagros Rodriguez ;
Saidi, Rabie ;
Sawford, Tony ;
Shypitsyna, Aleksandra ;
Speretta, Elena ;
Turner, Edward ;
Tyagi, Nidhi ;
Vasudev, Preethi ;
Volynkin, Vladimir ;
Wardell, Tony .
NUCLEIC ACIDS RESEARCH, 2019, 47 (D1) :D506-D515
[6]   Stress-activated Genomic Expression Changes Serve a Preparative Role for Impending Stress in Yeast [J].
Berry, David B. ;
Gasch, Audrey P. .
MOLECULAR BIOLOGY OF THE CELL, 2008, 19 (11) :4580-4587
[7]   AnGeLi: A Tool for the Analysis of Gene Lists from Fission Yeast [J].
Bitton, Danny A. ;
Schubert, Falk ;
Dey, Shoumit ;
Okoniewski, Michal ;
Smith, Graeme C. ;
Khadayate, Sanjay ;
Pancaldi, Vera ;
Wood, Valerie ;
Baehler, Jureg .
FRONTIERS IN GENETICS, 2015, 6
[8]   High-throughput approaches to understanding gene function and mapping network architecture in bacteria [J].
Brochado, Ana Rita ;
Typas, Athanasios .
CURRENT OPINION IN MICROBIOLOGY, 2013, 16 (02) :199-206
[9]   Genome-Wide Screen of Genes Required for Caffeine Tolerance in Fission Yeast [J].
Calvo, Isabel A. ;
Gabrielli, Natalia ;
Iglesias-Baena, Ivan ;
Garcia-Santamarina, Sarela ;
Hoe, Kwang-Lae ;
Kim, Dong Uk ;
Sanso, Miriam ;
Zuin, Alice ;
Perez, Pilar ;
Ayte, Jose ;
Hidalgo, Elena .
PLOS ONE, 2009, 4 (08)
[10]   The Gene Ontology Resource: 20 years and still GOing strong [J].
Carbon, S. ;
Douglass, E. ;
Dunn, N. ;
Good, B. ;
Harris, N. L. ;
Lewis, S. E. ;
Mungall, C. J. ;
Basu, S. ;
Chisholm, R. L. ;
Dodson, R. J. ;
Hartline, E. ;
Fey, P. ;
Thomas, P. D. ;
Albou, L. P. ;
Ebert, D. ;
Kesling, M. J. ;
Mi, H. ;
Muruganujian, A. ;
Huang, X. ;
Poudel, S. ;
Mushayahama, T. ;
Hu, J. C. ;
LaBonte, S. A. ;
Siegele, D. A. ;
Antonazzo, G. ;
Attrill, H. ;
Brown, N. H. ;
Fexova, S. ;
Garapati, P. ;
Jones, T. E. M. ;
Marygold, S. J. ;
Millburn, G. H. ;
Rey, A. J. ;
Trovisco, V. ;
dos Santos, G. ;
Emmert, D. B. ;
Falls, K. ;
Zhou, P. ;
Goodman, J. L. ;
Strelets, V. B. ;
Thurmond, J. ;
Courtot, M. ;
Osumi-Sutherland, D. ;
Parkinson, H. ;
Roncaglia, P. ;
Acencio, M. L. ;
Kuiper, M. ;
Laegreid, A. ;
Logie, C. ;
Lovering, R. C. .
NUCLEIC ACIDS RESEARCH, 2019, 47 (D1) :D330-D338