A uniqueness result for a p-Laplacian infinite semipositone problem involving nonlinear boundary conditions

被引:0
作者
Hai, D. D. [1 ]
Nichols, D. [2 ]
Shivaji, R. [2 ]
机构
[1] Mississippi State Univ, Dept Math & Stat, Mississippi, MS 39762 USA
[2] Univ N Carolina, Dept Math & Stat, Greensboro, NC 27412 USA
关键词
Uniqueness; Infinite semipositone; p-Laplacian; Nonlinear boundary conditions; POSITIVE RADIAL SOLUTIONS; ELLIPTIC-EQUATIONS; EXISTENCE; EXTERIOR; MULTIPLICITY; PARAMETER;
D O I
10.1016/j.jmaa.2023.127511
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study classes of two-point boundary value problems of the form: ⎧ ⎨⎪ ⎪⎩-(& phi;(u'))' = & lambda;h(t)f (u) ; (0, 1) u(0) = 0 u'(1) + c(u(1))u(1) = 0, where & phi;(s) = isip-2s for p > 1, h E C1((0, 1], (0, oo)) is decreasing, c E C([0, oo), (0, oo)) is non-decreasing and bounded, and f E C1((0, oo), R) is increasing on [L, oo) for some L > 0, has infinite semipositone structure at 0, and growth at oo like uq for q E (0,p -1). For classes of such h and f, we establish the uniqueness of positive solutions for & lambda; ⠅1. & COPY; 2023 Elsevier Inc. All rights reserved.
引用
收藏
页数:16
相关论文
共 20 条
[1]   Inequalities for second-order elliptic equations with applications to unbounded domains .1. [J].
Berestycki, H ;
Caffarelli, LA ;
Nirenberg, L .
DUKE MATHEMATICAL JOURNAL, 1996, 81 (02) :467-494
[2]   Uniqueness of nonnegative solutions for semipositone problems on exterior domains [J].
Castro, Alfonso ;
Sankar, Lakshmi ;
Shivaji, R. .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2012, 394 (01) :432-437
[3]   UNIQUENESS OF POSITIVE RADIAL SOLUTIONS FOR A CLASS OF INFINITE SEMIPOSITONE p-LAPLACIAN PROBLEMS IN A BALL [J].
Chu, K. D. ;
Hai, D. D. ;
Shivaji, R. .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2020, 148 (05) :2059-2067
[4]   Uniqueness of positive radial solutions for infinite semipositone p-Laplacian problems in exterior domains [J].
Chu, K. D. ;
Hai, D. D. ;
Shivaji, R. .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2019, 472 (01) :510-525
[5]   Uniqueness and nonexistence of positive solutions to semipositone problems [J].
Dancer, E. Norman ;
Shi, Junping .
BULLETIN OF THE LONDON MATHEMATICAL SOCIETY, 2006, 38 :1033-1044
[6]  
DANCER EN, 1986, P LOND MATH SOC, V53, P429
[7]   Existence and multiplicity of positive solutions for singular φ-Laplacian superlinear problems with nonlinear boundary conditions [J].
Dang Dinh Hai ;
Wang, Xiao .
ELECTRONIC JOURNAL OF QUALITATIVE THEORY OF DIFFERENTIAL EQUATIONS, 2021, (65) :1-13
[8]  
DIAZ JI, 1987, CR ACAD SCI I-MATH, V305, P521
[9]   Existence and uniqueness of positive solutions for some quasilinear elliptic problems [J].
Drábek, P ;
Hernández, J .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2001, 44 (02) :189-204
[10]   UNIQUENESS OF POSITIVE SOLUTIONS FOR QUASI-LINEAR ELLIPTIC-EQUATIONS WHEN A PARAMETER IS LARGE [J].
GUO, ZM ;
WEBB, JRL .
PROCEEDINGS OF THE ROYAL SOCIETY OF EDINBURGH SECTION A-MATHEMATICS, 1994, 124 :189-198