Impacts of reducing scattering and absorbing aerosols on the temporal extent and intensity of South Asian summer monsoon and East Asian summer monsoon

被引:7
作者
Fang, Chenwei [1 ,2 ]
Haywood, Jim M. [2 ,3 ]
Liang, Ju [2 ,4 ]
Johnson, Ben T. [3 ]
Chen, Ying [5 ,6 ]
Zhu, Bin [1 ]
机构
[1] Nanjing Univ Informat Sci & Technol, Collaborat Innovat Ctr Forecast & Evaluat Meteorol, Key Lab Meteorol Disaster Minist Educ KLME, Joint Int Res Lab Climate & Environm Change ILCEC,, Nanjing 210044, Peoples R China
[2] Univ Exeter, Fac Environm Sci & Econ, Exeter, England
[3] Met Off Hadley Ctr, Exeter, England
[4] China Agr Univ, Coll Resources & Environm Sci, Beijing 100193, Peoples R China
[5] Paul Scherrer Inst, Forschungsstr 111, CH-5232 Villigen, Switzerland
[6] Univ Birmingham, Sch Geog Earth & Environm Sci, Birmingham B15 2TT, England
基金
中国国家自然科学基金; 英国自然环境研究理事会;
关键词
BLACK CARBON AEROSOLS; CLIMATE-COMPOSITION MODEL; WESTERLY JET-STREAM; INDIAN MONSOON; ATMOSPHERIC CIRCULATION; INTERANNUAL VARIABILITY; ANTHROPOGENIC AEROSOLS; SULFATE AEROSOLS; WINTER MONSOON; AIR-POLLUTION;
D O I
10.5194/acp-23-8341-2023
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
The vast majority of reductions in aerosol emissions are projected to take place in the near future; however, associated impacts on the large-scale circulation over the populated Asian monsoon region remain uncertain. Using the state-of-the-art UK Earth System Model version 1 (UKESM1), this study examines the response of the South Asian summer monsoon and East Asian summer monsoon (SASM and EASM, respectively) to idealized reductions in anthropogenic emissions of carbonaceous aerosols and SO2. The analysis focuses on changes in the monsoon temporal extent and intensity of precipitation following decreases in either scattering (SCT) or absorbing (ABS) aerosols or decreases in both. For SCT, the combination of the early transition of land-sea thermal contrast and sea level pressure gradient during the pre-monsoon season, together with the late transition in the post-monsoon season associated with the tropospheric warming, advances the monsoon onset but delays its withdrawal, which leads to an extension of the summer rainy season across South Asia and East Asia. The northward shift of the upper-tropospheric Asian jet forced by the SCT reduction causes the anomalous convergence of tropospheric moisture and low-level ascent over northern India and eastern China. The intensification of the South Asian high (SAH) due to the warming over land also contributes to the dynamic instability over Asia. These changes enhance the rainy season of these regions in boreal summer. Reductions in absorbing aerosol act in the opposite sense, making the Asia's rainy season shorter and weaker due to the opposite impacts on land-sea contrast, Asian jet displacement and SAH intensity. With reductions in both SCT and ABS aerosol together the monsoon systems intensify, as the overall impact is dominated by aerosol scattering effects and results in the strengthening of monsoon precipitation and 850 hPa circulation. Although aerosol scattering and absorption play quite different roles in the radiation budget, their effects on the monsoon precipitation seem to add almost linearly. Specifically, the patterns of monsoon-related large-scale responses from reducing both SCT and ABS together are similar to the linear summation of separate effect of reducing SCT or ABS alone; this is despite the inherent nonlinearity of the atmospheric systems. The opposing adjustments of Asian rainy season forced by the ABS and SCT aerosol emission reductions suggest that emission controls that target factors like emissions of black carbon that warm the climate would have a different response to those that target overall aerosol emissions.
引用
收藏
页码:8341 / 8368
页数:28
相关论文
共 115 条
[1]   Description and evaluation of the UKCA stratosphere-troposphere chemistry scheme (StratTrop vn 1.0) implemented in UKESM1 [J].
Archibald, Alexander T. ;
O'Connor, Fiona M. ;
Abraham, Nathan Luke ;
Archer-Nicholls, Scott ;
Chipperfield, Martyn P. ;
Dalvi, Mohit ;
Folberth, Gerd A. ;
Dennison, Fraser ;
Dhomse, Sandip S. ;
Griffiths, Paul T. ;
Hardacre, Catherine ;
Hewitt, Alan J. ;
Hill, Richard S. ;
Johnson, Colin E. ;
Keeble, James ;
Kohler, Marcus O. ;
Morgenstern, Olaf ;
Mulcahy, Jane P. ;
Ordonez, Carlos ;
Pope, Richard J. ;
Rumbold, Steven T. ;
Russo, Maria R. ;
Savage, Nicholas H. ;
Sellar, Alistair ;
Stringer, Marc ;
Turnock, Steven T. ;
Wild, Oliver ;
Zeng, Guang .
GEOSCIENTIFIC MODEL DEVELOPMENT, 2020, 13 (03) :1223-1266
[2]   Impact of the modal aerosol scheme GLOMAP-mode on aerosol forcing in the Hadley Centre Global Environmental Model [J].
Bellouin, N. ;
Mann, G. W. ;
Woodhouse, M. T. ;
Johnson, C. ;
Carslaw, K. S. ;
Dalvi, M. .
ATMOSPHERIC CHEMISTRY AND PHYSICS, 2013, 13 (06) :3027-3044
[3]   Contribution of local and remote anthropogenic aerosols to the twentieth century weakening of the South Asian Monsoon [J].
Bollasina, Massimo A. ;
Ming, Yi ;
Ramaswamy, V. ;
Schwarzkopf, M. Daniel ;
Naik, Vaishali .
GEOPHYSICAL RESEARCH LETTERS, 2014, 41 (02) :680-687
[4]   Earlier onset of the Indian monsoon in the late twentieth century: The role of anthropogenic aerosols [J].
Bollasina, Massimo A. ;
Ming, Yi ;
Ramaswamy, V. .
GEOPHYSICAL RESEARCH LETTERS, 2013, 40 (14) :3715-3720
[5]   Anthropogenic Aerosols and the Weakening of the South Asian Summer Monsoon [J].
Bollasina, Massimo A. ;
Ming, Yi ;
Ramaswamy, V. .
SCIENCE, 2011, 334 (6055) :502-505
[6]  
Bose I., 2017, Journal of Geoscience and Environment Protection, V5, P109, DOI DOI 10.4236/GEP.2017.57016
[7]   A comprehensive evaluation of precipitation simulations over China based on CMIP5 multimodel ensemble projections [J].
Chen, Liang ;
Frauenfeld, Oliver W. .
JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES, 2014, 119 (10) :5767-5786
[8]   Assessing objective techniques for gauge-based analyses of global daily precipitation [J].
Chen, Mingyue ;
Shi, Wei ;
Xie, Pingping ;
Silva, Viviane B. S. ;
Kousky, Vernon E. ;
Higgins, R. Wayne ;
Janowiak, John E. .
JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES, 2008, 113 (D4)
[9]   Role of seasonal transitions and the westerlies in the interannual variability of the East Asian summer monsoon precipitation [J].
Chiang, J. C. H. ;
Swenson, L. M. ;
Kong, W. .
GEOPHYSICAL RESEARCH LETTERS, 2017, 44 (08) :3788-3795
[10]   Development and evaluation of an Earth-System model-HadGEM2 [J].
Collins, W. J. ;
Bellouin, N. ;
Doutriaux-Boucher, M. ;
Gedney, N. ;
Halloran, P. ;
Hinton, T. ;
Hughes, J. ;
Jones, C. D. ;
Joshi, M. ;
Liddicoat, S. ;
Martin, G. ;
O'Connor, F. ;
Rae, J. ;
Senior, C. ;
Sitch, S. ;
Totterdell, I. ;
Wiltshire, A. ;
Woodward, S. .
GEOSCIENTIFIC MODEL DEVELOPMENT, 2011, 4 (04) :1051-1075